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Abstract
Whether quantum correlations between identical particles can serve as a resource for
quantum information protocols has o�en been questioned, since the constituent parti-
cles are not individually addressable. In this work, a scheme is presented that converts
these correlations into entanglement between distinct spatial modes. Starting with a
Bose-Einstein condensate (BEC) of 87Rb in a tightly con�ning trap, we use spin-mixing
to generate a quantum correlated state of indistinguishable particles in a single spatial
mode. �is entanglement is subsequently distributed in space by expanding the atomic
cloud which can be viewed as spli�ing the BEC in the spatial degree of freedom. Using
a spatially resolved spin readout we demonstrate a particularly strong form of entan-
glement known as Einstein-Podolsky-Rosen (EPR) steering between spatially distinct
regions of the expanded BEC. �is certi�es that the prepared state is indeed a useful
resource for quantum information protocols. Additionally, we developed a new readout
technique based on coupling the spin state to initially unoccupied auxiliary modes. �is
spli�ing in the internal degree of freedom enables the simultaneous and spatially re-
solved extraction of multiple noncommuting observables. We show that this technique
is capable of detecting quantum correlations by measuring �uctuations below the stan-
dard quantum limit. �is results in a new method to characterize quantum states and
together with the spatial resolution provides the possibility to detect entanglement in
complex multimode se�ings. Combining these two results provides the prospect of study-
ing the generation of cluster states, which are the crucial resource for one-way quantum
computation. �is renders BECs a new test bed for quantum information tasks.



Zusammenfassung
Ob �antenkorrelationen zwischen identischen Teilchen als Ressource für �antenin-
formationsprotokolle dienen können, wurde o� in Frage gestellt, da die einzelnen Be-
standteile nicht individuell adressierbar sind. Innerhalb dieser Arbeit wird eine Methode
vorgestellt, mit der diese Korrelationen in Verschränkung zwischen unterscheidbaren
räumlichen Moden umgewandelt werden können. Als Ausgangspunkt dient ein Bose-
Einstein Kondensat (BEC) aus 87Rb Atomen in einer eng begrenzten Falle. Mi�els Spin-
Wechselwirkung wird ein quantenverschränkter Zustand zwischen ununterscheidbaren
Teilchen in einer einzelnen räumlichen Mode erzeugt. Durch Expandieren der Atom-
wolke wird diese Verschränkung im Raum verteilt. Die Expansion kann dabei als Teilung
des BECs im räumlichen Freiheitsgrad aufgefasst werden. Eine räumlich aufgelöste De-
tektion des Spinzustandes ermöglicht den Nachweis von Einstein-Podolsky-Rosen (EPR)
Steering, einer besonders starken Form der Verschränkung zwischen räumlich getren-
nten Regionen im ausgebreiteten BEC. Damit wird zugleich gezeigt, dass der präparierte
Zustand tatsächlich eine nützliche Ressource für �anteminformationsprotokolle liefert.
Darüberhinaus wurde eine neue Auslesemethode entwickelt, welche darauf beruht, den
Spinzustand an anfangs unbesetzte Hilfsmoden zu koppeln. Diese Teilung im internen
Freiheitsgrad ermöglicht die gleichzeitige und räumlich aufgelöste Extraktion mehrer
nichtkommutierender Observablen. Durch Messung von Fluktuationen unterhalb des
Standard-�antenlimits wird gezeigt, dass diese Technik in der Lage ist, �antenkorre-
lationen nachzuweisen. Dies stellt eine neue Methode dar, �antenzustände zu charak-
terisieren und bietet zusammen mit der räumlichen Au�ösung die Möglichkeit, Ver-
schränkung in komplexen Multimoden-Umgebungen zu detektieren. Beide Ergebnisse
der Arbeit zusammen bieten die Aussicht, die Erzeugung von Cluster-Zuständen zu un-
tersuchen, welche einen essentiellen Bestandteil messbasierter �antencomputer bilden.
Dadurch werden BECs zu einem neuen Testfeld für �anteninformationsprotokolle.
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1. Introduction

While entanglement is nowadays widely accepted as a key ingredient for future quantum
technologies, its meaning in the context of identical particles has remained somewhat
elusive. Stating that two or more systems are correlated implicitly assumes that it is
possible to assign to each of them a distinct label, for example system A and system B. In
classical physics, this appears like a needless remark, since there two systems, e.g. two
particles, are in principle always distinguishable via a list of distinct properties [1]. In
quantum mechanics, however, the notion of indistinguishable particles exists [2]. �us,
the statement that two identical particles A and B are correlated or rather entangled, is
conceptually di�cult as the labeling is arti�cial and fundamentally meaningless. More-
over, such a labeling directly leads to an entangled state as the mathematical description
requires the quantum state to be (anti-) symmetrized under the exchange of two bosons
(fermions) [3, 4, 5]. In this way, entanglement between identical particles has sometimes
been argued to be merely a mathematical artifact [6].

�is debate has been fueled by experimental results with Bose-Einstein condensates
(BECs) which consist of hundreds to thousands of indistinguishable bosons. In these
systems spin squeezed states have been generated which provide an enhancement in
precision for metrological tasks [7, 8, 9]. �is metrological gain is a�ributed to quantum
correlations between the constituent spins and in a particle basis one indeed �nds that
the particles are highly entangled [10, 11]. �e correlations are even strong enough
to certify steering [12] and Bell correlations [13] which are especially strong forms of
entanglement. �us, in these systems entanglement between identical particles is not
just a mathematical statement but can, in fact, be measured.

To resolve this confusion, an operational de�nition of entanglement has been pro-
posed. Speci�cally in quantum information theory, entanglement is only considered to
be “real” if it can somehow be exploited for quantum enhanced protocols via local ma-
nipulations [14]. However, since the entangled subsystems in a BEC are not individually
addressable, the question remains, whether such correlations can be used as a resource
for quantum information applications. In this context, it has been argued that the parti-
cles in a BEC can in principle be made distinguishable by expanding the atomic cloud
until it is dilute enough, that each atom can be identi�ed by its position [15]. Moreover,
it has been theoretically shown that entanglement between identical particles can be
transformed into entanglement between distinguishable modes via basic beamspli�er
operations which themselves do not introduce entanglement [16].

In this thesis, we experimentally demonstrate that it is indeed possible to convert
quantum correlations between indistinguishable particles into quantum informationally
useful entanglement. In the experiment, we use the interatomic interactions in a BEC to
generate a quantum correlated state of identical particles. A�er expanding the atomic
cloud, we use spatially resolved absorption imaging to record the spin state of the atoms.
�e expansion can be modeled as a beamspli�er operation in the spatial degree of freedom
and enables the de�nition of subsystems via distinct spatial regions on the absorption
images. With this, we reveal Einstein-Podolsky-Rosen (EPR) steering between spatially
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separated parts of the expanded condensate. EPR steering certi�es that the generated state
is a useful resource for quantum information protocols such as quantum teleportation [17]
and quantum cryptography [18]. �is has already triggered renewed theoretical e�orts
to incorporate entanglement between identical particles into the framework of quantum
information theory [19].

�e hallmark of EPR steering is that the measurement results in one system, say B, can
be used to estimate the results in system A be�er than predicted by the local uncertainty
relation [20]. To reveal these correlations, both systems have to probed in the same mea-
surement basis. Experimentally, this means that it is su�cient to set the measurement
basis globally. However, one could also consider di�erent types of correlations, where
one has to measure system A in a conjugate measurement basis. �is is, for example,
the case for cluster states, which are the essential resource for one-way quantum com-
putation [21]. �us, a measurement in a single global measurement basis might not be
enough to fully assess the usefulness of an experimentally generated state for quantum
information protocols. In this case a local control of the measurement basis is required. In
an experimental multimode se�ing however, it is o�en challenging to predict exactly the
correlated measurement bases. �us, experimentally, one would need to try out di�erent
combinations which becomes very time consuming.

In this context, we developed a new readout technique based on coupling the spin
state to initially unoccupied auxiliary modes. Unitary transformations combined with
a projective measurement in this enlarged Hilbert space enable the simultaneous and
spatially resolved measurement of multiple noncommuting spin observables. �is con-
stitutes an experimental implementation of a generalized measurement scheme which
can be formulated in the framework of positive operator valued measures (POVMs). On
a fundamental level this simultaneous readout is possible because the coupling to empty
modes reduces the measurement precision in each observable to make it consistent with
the uncertainty relation. Yet, by measuring �uctuations below the shot-noise limit, we
demonstrate that this method is still capable of detecting quantum correlations. Combin-
ing this result with the spatial resolution, we demonstrate that this readout is in principle
able to verify entanglement between spatially distinct modes. We also show that a simul-
taneous detection scheme is closely connected to a special representation of a many-body
state, namely the Husimi function. �erefore, this readout provides a new tool for the
characterization of quantum states. �e application of this readout method is not lim-
ited to the detection of entanglement, but can in general be used to reveal correlations
between conjugate observables in spatially extended systems. As such it also provides
a new tool for the study of multimode BECs, for example, for the investigation of spin
dynamics far from equilibrium [22].
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CHAPTER 1. INTRODUCTION

Organization of this thesis
• Chapter 2 provides the theoretical basics for this work. Our experimental platform

is a spinor BEC of 87Rb occupying the F = 1 hyper�ne manifold. �erefore, start-
ing from the well-known spin-1/2 system, the �rst part introduces the relevant
operators to describe spin-1 particles. Within this operator basis, two SU(2) sub-
spaces, the spin sphere and the spin-nematic sphere, are presented which provide a
convenient illustration of the state and the relevant dynamics. A�er a short review
of projective measurements, the Wigner and the Husimi quasiprobability distribu-
tions are introduced as a representation of a many-body quantum state. �e last
part focuses on entanglement. Particularly, we will introduce steering and di�erent
entanglement de�nitions in multipartite systems.

• In chapter 3 we will present the experimental system. A�er a short overview over
the condensation process, we describe the imaging scheme with which we imple-
ment a projective measurement of the spin state. We will give details about the
experimental control of the spin state via microwave and radiofrequency �elds.

• Chapter 4 provides details about the spin-mixing process which we use to generate
entangled many-particle states. We �rst provide a theoretical description within
the single-mode approximation before we extend the treatment to include the
interactions of the condensate in the external potential. �is leads to an e�ective
potential for the particle excitations where spin-mixing allows the coupling to
the spatially excited modes. By exploiting the symmetry of the corresponding
wavefunction we are able to selectively analyze each spatial mode. With this we
extract the energy spectrum of this potential which agrees well with our theoretical
description.

• Chapter 5 builds on the understanding of the spin-mixing process developed in
the preceding chapter to generate a spin-nematic squeezed state in a single spatial
mode. Starting from a tightly con�ning crossed dipole trap we expand the atomic
cloud in space by switching o� one dipole beam. �is distributes the generated en-
tanglement in space. A�er a spatially resolved spin readout we verify EPR steering
between spatially distinct parts of the expanded condensate. Based on steering we
develop an entanglement witness with which we certify up to genuine 5-partite
entanglement.

• In chapter 6 we introduce the generalized measurement concept of POVMs and
its experimental implementation. �is enables the simultaneous readout of con-
jugate collective spin-1 observables. We demonstrate this technique by analyzing
two di�erent types o� spin-waves where this new readout together with our spa-
tial resolution allows extracting all three spin directions in a single experimental
realization. �is provides a direct visualization of the generated states on a spin
sphere. Moreover, we will show that this readout is capable of detecting quantum
correlations by measuring �uctuations below the shot-noise limit.

• In chapter 7 we discuss in more detail how a simultaneous readout scheme could be
be employed to detect entanglement between distinct spatial regions. For this we
introduce the Arthurs-Kelly uncertainty relation which provides a bound for the
simultaneous measurement of two conjugate observables. In the end alternative
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entanglement detection schemes are discussed based on measurements in mutually
unbiased bases. In this context, we provide an experimental sequence to implement
the quantum Fourier transformation, which corresponds to a transformation into
a mutually unbiased basis.

• Chapter 8 provides further insight into the connection between a simultaneous
readout and the representation of many-body states via the Husimi quasiprobability
distribution. �is represents an alternative to standard tomographic methods to
reconstruct the Wigner distribution. Summarizing the results obtained in optical
systems, the sampling of the Husimi function is in many cases more e�cient to
estimate the �rst and second moment of a given quantum state. Finally, we use
the simultaneous readout to directly track the spin-mixing dynamics in the spin-
nematic phase space beyond the initial squeezing dynamics. If the spin-mixing
process is in resonance with a single spatial mode we �nd coherent dynamics.
Tuning this process simultaneously into resonance with two spatial modes we �nd
indications for a relaxation of the dynamics towards the minimum of the mean-�eld
energy.

• In the last part we give a short outlook towards combining the results of this thesis
for studying the generation of cluster states in a BEC.
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2. Theoretical background

�is chapter introduces the key theoretical concepts that are relevant throughout this
thesis. For the experiments we employ a spinor Bose-Einstein condensate of 87Rb which,
in its electronic groundstate, features two hyper�ne manifolds, F = 1 and F = 2. As
most of the experiments are performed in the F = 1 manifold, we start with a treatment
of a spin-1 system and provide a complete operator basis to describe the dynamics and
coherent couplings. A�er a short introduction to quantum measurements and many-body
systems we will give an overview of quantum correlations and entanglement which are
deemed essential for future quantum technologies. �e aim of this chapter is to provide a
basic understanding of the concepts on which we will elaborate further in the following
chapters.

2.1. From spin-1/2 to spin-1
Starting from a single-particle description, the well-known spin-1/2 system serves as a
basis which we will expand to incorporate the additional degrees of freedom inherent to
a spin-1 system. A special focus will be put on developing a graphical representation of
the quantum state and its dynamics.

2.1.1. Spin-1/2

�e spin-1/2 formalism provides a complete description of a single-particle two-level
system, o�en referred to as a qubit in quantum information, and is therefore extensively
discussed in literature [23]. We will here review the basic concepts and the visualization
of a spin-1/2 state, which will prove useful later for an intuitive understanding of the
spin-1 system. We will denote the two basis states as

|↑〉 =

(
1
0

)
and |↓〉 =

(
0
1

)
. (2.1)

Any pure single-particle state |ψ 〉 can then be wri�en, up to a global phase, as a coherent
superposition of these two states

|ψ 〉 = eiϕL/2 cos θ2 |↑〉 + e−iϕL/2 sin θ2 |↓〉

=

(
eiϕL/2 cos θ

2
e−iϕL/2 sin θ

2

)
.

(2.2)

�is state is characterized by the two angles θ ∈ [0,π ] and ϕL ∈ [0, 2π ]. In the follow-
ing, the phase ϕL = ϕ↑ − ϕ↓ will be referred to Larmor phase which describes the phase
di�erence between the two basis states. With these two degrees of freedom, the state is
conveniently represented on the surface of a sphere as shown in Fig. 2.1, the so-called
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2.1. FROM SPIN-1/2 TO SPIN-1

Figure 2.1.: Bloch vs. spin sphere: A general pure spin-1/2 state |ψ 〉 is characterized
by two angles and can therefore be represented as point on the surface of
a sphere, the so-called Bloch sphere (le�). �e unitary Û = exp(−iφ®n ®J)
corresponds to rotations of the state around the unit vector ®n (blue vector)
by the angle φ. In comparison, a general mixed state is characterized by the
expectation value of the three spin directions, which yields a point inside a
spin sphere (right). Also on this sphere the spin operators are the generators
of rotations.

Bloch sphere, where the poles correspond to the two basis states. Any unitary transfor-
mation of the state can then be mapped on rotations of the state on the Bloch sphere. To
parameterize these rotations one de�nes the three Hermitian spin operators which, in
matrix notation, are given by

Ĵx =
1
2

(
0 1
1 0

)
, Ĵy =

1
2

(
0 −i
i 0

)
, Ĵz =

1
2

(
1 0
0 −1

)
. (2.3)

�ese operators ful�ll the de�ning SU(2) commutation relations [Ĵi , Ĵj] = ϵijkiĴk with
i, j,k ∈ {x ,y, z} and ϵijk being the Levi-Civita symbol with ϵxyz = 1. �ey are, thus, gen-
erators of rotations, meaning that the unitary Û = exp(−iφ®n ®J) with ®J = (Ĵx , Ĵy, Ĵz)T
generates rotations of the state on the Bloch sphere around the unit vector ®n by the
angle φ. Especially, a change of the Larmor phase corresponds to a rotation around the
z-direction.

�e spin operators form a basis of the su(2) Lie algebra and together with the unity
operator 12 provide a decomposition of any Hermitian operator in the Hilbert space C2.
Importantly the density matrix

ρ̂ =
∑
i

Pi |ψi〉 〈ψi | with
∑
i

Pi = 1 (2.4)

used for the description of general mixed states, is also an Hermitian operator within
this Hilbert space and can, therefore, be expressed as

ρ̂ =
1
212 + ®r ®̂J . (2.5)
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CHAPTER 2. THEORETICAL BACKGROUND

Together with the condition det ρ̂2 ≤ 1 we get |®r |2 ≤ 1, where equality only holds for
pure states. �is means, a general mixed state can be expressed as a vector ®r inside a unit
sphere, while any pure state is represented on the surface of this sphere. To distinguish
this sphere from the Bloch sphere, which was introduced for pure states, this object will
be denoted as spin sphere. In this representation the mixed state is completely determined
by the expectation value of the three spin operators. Analogously to pure states, unitary
transformations can be described by rotations on the spin sphere.

Representing the unitary transformation by a rotation of the state on the spin sphere
corresponds to the Schrödinger picture for describing the quantum evolution. Equiva-
lently, we could use the Heisenberg picture where the position of the state is �xed and
the axes are rotated. To further highlight the connection between the SU(2) commutation
relations and the rotations on the spin sphere, let us calculate how the axis Ĵi is changed
by a rotation generated by Ĵj with i , j

eiφĴj Ĵie−iφĴj =

=1︷      ︸︸      ︷
eiφĴje−iφĴj

(
Ĵi − iφ

=ϵi jk iĴk︷  ︸︸  ︷
[Ĵi , Ĵj] −

φ2

2 [[Ĵi , Ĵj], Ĵj] + . . .
)

= cos(φ)Ĵi + sin(φ)ϵijk Ĵk .

(2.6)

In practice, we will o�en employ a mixture of the Schrödinger and Heisenberg picture
where the former is used to describe the dynamics and the la�er for a description of the
readout sequence.

For the single-particle spin-1/2 case the distinction between the Bloch and the spin
sphere seems a bit pedantic. It is, however, important to discriminate between an exact
representation of a pure state (Bloch sphere) and a representation in terms of mean spin
values which connects to experimental measurement results.

2.1.2. Spin-1

A spin-1 state consists of three levels, where we use the three magnetic substates |mF〉
withmF ∈ {−1, 0,+1} of the F = 1 hyper�ne manifold as basis states. In this basis a pure
single-particle state is, up to a global phase, given by

|ψ 〉 = r+1eiϕL/2 |+1〉 + r0eiϕS |0〉 + r−1e−iϕL/2 |−1〉

=
©­«
r+1eiϕL/2

r0eiϕS

r−1e−iϕL/2

ª®¬
(2.7)

where the prefactors r0,±1 are chosen to be real numbers with
∑

i r
2
i = 1, which give

the probability r 2
i to �nd the particle in the state |i〉. Analogously to the spin-1/2 case,

we de�ne the Larmor phase as ϕL = ϕ+1 − ϕ−1, i.e. the phase di�erence between the
states |±1〉. Additionally, the state is characterized by a second phase, the so-called spinor
phase de�ned here as ϕS = ϕ0 − (ϕ+1 + ϕ−1)/2 which describes the relative phase of the
state |0〉 compared to the states |±1〉. Note, that sometimes an alternative de�nition
of the spinor phase is used which deviates from the one given here by a factor of −2,
i.e. ϕ′S = −2ϕS [24]. However, the convention used here is directly connected to the
geometrical representation of the state as shown later.
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2.1. FROM SPIN-1/2 TO SPIN-1

Using spin algebra, a spin-1 state can be thought of as a symmetric superposition of
two spin-1/2 states. �is makes it possible to represent a pure spin-1 state via two points
on the Bloch sphere [25]. While this representation is convenient to study symmetries
of a given spin-1 state [26] and to gain an intuitive understanding why the mean of the
spin operators is not enough to unambiguously characterize a given state, it is not very
useful to describe more general mixed states, let alone many-particle states. �erefore,
similar to the spin-1/2 case, the aim is to �nd a complete set of operators which form a
basis for hermitian operators acting on the spin-1 Hilbert space to completely describe
the density matrix of a mixed state. As a start, we choose the spin-1 analog of the three
spin operators which, in matrix notation, are given by

Ŝx =
1
√

2
©­«
0 1 0
1 0 1
0 1 0

ª®¬ , Ŝy = 1
√

2
©­«
0 −i 0
i 0 −i
0 i 0

ª®¬ , Ŝz = ©­«
1 0 0
0 0 0
0 0 −1

ª®¬ , (2.8)

which, as before, ful�ll the SU(2) commutation relation [Ŝi , Ŝj] = iϵijkŜk . In contrast to
the spin-1/2 case, the mean value of these three operators are, however, not su�cient to
uniquely determine the quantum state. Take for example the two states

��ψp
〉
=

©­«
0
1
0

ª®¬
��ψtp

〉
(ϕL) =

1
√

2
©­«

eiϕL/2

0
e−iϕL/2

ª®¬ , (2.9)

which are called polar and transverse polar state, respectively. Calculating the mean spin
lengths for both states one �nds,

〈
ψp

�� Ŝi ��ψp
〉
=

〈
ψtp

�� Ŝi ��ψtp
〉
= 0 for all i ∈ {x ,y, z}. �us,

additional observables are required to unambiguously identify the spin state.

One choice are the so-called quadrupole operators, which are de�ned via [27, 28, 24]

Q̂ij = ŜiŜj + ŜjŜi −
4
3δij13 (2.10)

with i, j ∈ {x ,y, z}, the Kronecker delta δij and the unity operator 13.

If we imagine again a spin-1 state in terms of two points on a Bloch sphere, we can
intuitively think about these operators in the following way. If we draw a vector from
the origin of the sphere to each of the two points, then the spin operators describe the
total spin of this system by adding the two vectors up. �is is not unique since for a given
total spin, there exist many con�gurations of the two points that yield the same result.
To distinguish these con�gurations we need quadrupole operators, which, if we interpret
the vectors as dipole moments, describe the quadrupole moment of each con�guration.
�is is also, historically, the origin of the quadrupole operators [29].

Together with the spin operators we get a total of 9 operators. However, as the density
just has 8 independent entries this basis set is overcomplete and, thus, we select the
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CHAPTER 2. THEORETICAL BACKGROUND

following �ve operators out of the six quadrupole operators

Q̂xz =
1
√

2
©­«
0 1 0
1 0 −1
0 −1 0

ª®¬ , Q̂yz = 1
√

2
©­«
0 −i 0
i 0 i
0 −i 0

ª®¬ , Q̂zz = ©­«
2
3 0 0
0 −4

3 0
0 0 2

3

ª®¬ ,
V̂x =

1
2 (Q̂xx − Q̂yy) =

©­«
0 0 1
0 0 0
1 0 0

ª®¬ , V̂y = Q̂xy = ©­«
0 0 −i
0 0 0
i 0 0

ª®¬
(2.11)

With these operators a general spin-1 density matrix is parameterized as

ρ̂ =
1
313 +

∑
i

si Ŝi +
∑
j

qj Q̂j +
∑
k

vk V̂k . (2.12)

�e density matrix of a general single-particle mixed state is, thus, de�ned by the mean
value of these eight operators. Using again the example of the polar and transverse
polar state we �nd that the two have indeed a unique representation via these operators,
explicitly given by

ρ̂p =
1
313 − 4/3Q̂zz

ρ̂tp =
1
313 + 4/3Q̂zz + cos(2ϕL)V̂x + sin(2ϕL)V̂y .

(2.13)

�ere exist alternative choices to parameterize a spin-1 state for example in terms
of so-called Gell-Mann matrices [30]. However, the parameterization in terms of spin
and quadrupole operators is more suitable to describe the dynamics in our experimental
system.

2.1.3. Graphical representation on a spin-1 sphere

As the spin operators {Ŝx , Ŝy, Ŝz} ful�ll the de�ning SU(2) commutation relations, the
mean spin of a given state can be represented on a sphere on which the spin operators
generate rotations in the same way as in the spin-1/2 case. In contrast to spin-1/2 systems,
even the state vector of a pure state given by the expectation value of the three spin
observables can be inside the sphere as we have seen for the polar state. Additionally, it
has been shown that the expectation value of the spin alone is not su�cient to represent
the quantum state but the expectation value of the quadrupole operators are required as
well.

Taking a closer look at the de�nition of the quadrupole operators in Eq. (2.10), we see
that they are linked to the second moment of the spin, i.e. the covariance matrix which
is de�ned as

Tij =
1
2 〈ŜiŜj + ŜjŜi〉Q − 〈Ŝi〉Q〈Ŝj〉Q

= 〈
1
2 Q̂ij +

1
3δij13〉Q − 〈Ŝi〉Q〈Ŝj〉Q,

(2.14)

where we denote with 〈·〉Q the quantum mechanical expectation value tr(·ρ̂). As the
quadrupole operators together with the spin operators completely identify a given state,
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2.1. FROM SPIN-1/2 TO SPIN-1

Figure 2.2.: Representation of the polar and transverse polar state on a spin
sphere: Both, the polar and transverse polar state feature a vanishing ex-
pectation value for all three spin operators. To graphically distinguish these
two states on a spin sphere, one has to include their second moments. �e
polar state has no �uctuations along the Sz direction but large �uctuations
along the orthogonal spin directions resulting in a disk shape. As the trans-
verse polar state is connected to the polar state via a π/2 spin rotation, the
state features large �uctuations along the Sz direction and the orientation of
the disk is determined by the Larmor phase.

any single-particle state can be characterized by its mean spin length and an ellipsoid
representing the �uctuations of the state [31]. �e major axes of this ellipsoid are de-
termined by diagonalizing the covariance matrix. As such the state can be graphically
represented in a spin sphere, similar to the spin-1/2 case. While for the spin-1/2 case
the expectation values are enough, for the spin-1 case one has to additionally draw an
ellipsoid to take into account the second moment of the state. Unitary transformations
induced by the spin operators are still described by rotations on the spin sphere but one
now has to rotate the whole state ellipsoid instead of just a single point.

As an example we take again the polar and the transverse polar state as de�ned before.
We have seen that for both states the mean spin length vanishes along all directions.
�ese states can, however, be distinguished by their �uctuations as shown in Fig. 2.2.
�e polar state features large �uctuation in the Sx − Sy-plane but no �uctuations along
Sz , since it is an eigenstate of the Ŝz operator. In contrast, the transverse polar state has
large �uctuations along the plane de�ned by the z-direction and one orthogonal direction
cos(2ϕL)Sx + sin(2ϕL)Sy determined by the Larmor phase ϕL.

2.1.4. Additional SU(2) subspaces

Here, we provide some additional connections between the spin-1 operators to make
them more familiar to the reader. Besides the SU(2) subspace spanned by the three spin
operators {Ŝx , Ŝy, Ŝz}, there exist two other SU(2) subspaces, namely {Q̂xz, Q̂yz, Ŝz} and
{V̂x , V̂y, Ŝz}. In principle, these subspaces could also be used as a complimentary repre-
sentation of a spin-1 state on the respective spheres. For describing the dynamics in the
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CHAPTER 2. THEORETICAL BACKGROUND

experiments later these subspaces are however not very convenient. We just note that all
three subspaces contain the operator Ŝz and a rotation around the corresponding axis is
equivalent to a change of the Larmor phase. �us, in a Heisenberg picture the remaining
two operators in each SU(2) subspace are connected via a change of the Larmor phase.
With this, we de�ne the “transversal” operators

Ŝ⊥(ϕL) B cos(ϕL)Ŝx + sin(ϕL)Ŝy

Q̂⊥(ϕL) B cos(ϕL)Q̂yz − sin(ϕL)Q̂xz

V̂⊥(ϕL) B cos(2ϕL)V̂x + sin(2ϕL)V̂y .

(2.15)

Note that the minus sign in the second line is necessary for a consistent de�nition of
these operators which will become clear in the following section.

Even though the operator V̂⊥ will only play a minor role for the discussion of the
experiments presented in this thesis, we will add a few remarks for completeness. In
the de�nition of V̂⊥ the factor of two originates from the commutation relations of this
subspace which are [V̂x , V̂y] = 2iŜz and cyclic permutations thereof. �is factor of two
means that for example the unitary e−iϕLŜz rotates the state on the sphere by 2 ·ϕL. �us,
V̂x and V̂y are connected by a change of the Larmor phase by only π/4. By looking at
the de�nition of these three operators one �nds that they e�ectively describe a spin-1/2
system consisting of the states |±1〉. Canceling the second row and column in the matrix
representation yields the spin-1/2 operators introduced before times a factor of two.

2.1.5. The spin-nematic sphere

Similar to the connection between the operator Ŝz and the Larmor phase, the operator
Q̂zz is connected to the spinor phase ϕS. Speci�cally, the unitary operation e−iφQ̂zz/2
will advance the spinor phase of the state by φ. In a Heisenberg picture, this unitary
transformation connects the operators Ŝ⊥ and Q̂⊥ with Q̂⊥ → Ŝ⊥ for φ = π/2. �is
connection is the reason for the minus sign in Eq. (2.15) as the operator Ŝy is connected
to −Q̂xz via the spinor phase.

Since the connection between the spinor phase and the quadrupole operator Q̂zz will
be essential for many experimental sequences, it would be convenient to represent this
unitary operation on some SU(2) sphere where the rotations are generated by Q̂zz . For
this, we �rst de�ne the operator

Q̂0 = −
1
313 − Q̂zz =

©­«
−1 0 0
0 1 0
0 0 −1

ª®¬ (2.16)

to center the spectrum around zero. �e rotation generated by this new operator will be
the same just with a di�erent orientation since the unity operator does not in�uence the
unitary evolution. With this operator, we de�ne the so-called spin-nematic subspace [24]
consisting of {Q̂⊥(ϕL), Ŝ⊥(ϕL), Q̂0} for each phase ϕL. Calculating the commutation rela-
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2.1. FROM SPIN-1/2 TO SPIN-1

tions for the three operators gives

[Q̂0, Q̂⊥(ϕL)] = 2iŜ⊥(ϕL), [Ŝ⊥(ϕL), Q̂0] = 2iQ̂⊥(ϕL),

[Q̂⊥(ϕL), Ŝ⊥(ϕL)] = 2iQ̂0 + i
©­«

1 0 −e−i2ϕL

0 0 0
−ei2ϕL 0 1

ª®¬ = 2iQ̂0 + i(N̂
+ − V̂⊥(ϕL)),

(2.17)

where we introduced the operator N̂+ = (13 − Q̂0)/2 which measures the population in
the states |±1〉. �e �rst two commutation relations are equivalent to the statement that
the operators Ŝ⊥ and Q̂⊥ are connected via a change of the spinor phase. While this is
true for any state, in general, the operators {Q̂⊥(ϕL), Ŝ⊥(ϕL), Q̂0} do not ful�ll the SU(2)
commutation relation. �is means that rotations generated by Ŝ⊥ and Q̂⊥ are generally
not represented on such a sphere.

However, for states |ψn〉 with equal probabilities to �nd a particle in the state |±1〉,
one can �nd a value of ϕL with 〈N̂+ − V̂⊥(ϕL)〉Q = 0. �e operators then ful�ll the SU(2)
permutation relation for the quantum mechanical expectation value with

〈[Q̂⊥(ϕL), Ŝ⊥(ϕL)]〉Q = 2i〈Q̂0〉Q. (2.18)

Since any unitary transformation that is generated by these three operators does not
change the Larmor phase of a given state this permutation relation remains valid during
the evolution. We can thus evaluate Eq. (2.6) in the mean and interpret these operators
as generators for rotations on a sphere spanned by the expectation value of the operators
{Q̂⊥(ϕL), Ŝ⊥(ϕL), Q̂0}. As before, the factor of 2 means that, for example, the unitary
exp(−iφŜ⊥(ϕL)) rotates the state by 2φ aroundS⊥(ϕL) on the spin-nematic sphere. It turns
out that this spin-nematic sphere provides a convenient visualization for the quantum
dynamics we are experimentally interested in. Especially the polar state, which is o�en
used as an initial state for the experiments, is represented on the north pole of such a
spin-nematic sphere. Even though the polar state has no de�ned Larmor phase and can
consequently be represented on any spin-nematic sphere, a small rotation around S⊥
transforms the state consistently such that it stays on the surface of the corresponding
spin-nematic sphere. We will therefore use this sphere in connection with the spin sphere
to provide a complimentary representation of the quantum state (see Fig. 2.3).

�e spin-nematic sphere also provides another insight about spin-1 operators. Assum-
ing we start with a state with 〈Ŝx〉Q = 1, i.e. it has a maximal transversal spin length.
Such a state is represented on the surface of the spin sphere as well as the corresponding
spin-nematic sphere. A change of the spinor phase will then rotate the state on the spin
nematic sphere around the Q0 axis. A�er a rotation by π/2 the mean spin length has
vanished and the state has a maximal transversal quadrupole moment. �e resulting
state is then no longer represented on the surface of the spin sphere as shown in Fig. 2.3.
Similar for all states that can be represented on the surface of a spin-nematic sphere, one
can �nd spinor phases for which the mean transversal spin vanishes and turns it into a
quadrupole moment, i.e. one can change the spin length by tuning the spinor phase.

While the connection between the operators Ŝ⊥ and Q̂⊥ via the spinor phase is always
true, it is not true that we can for every state reduce the transversal spin length to zero
by changing the spinor phase. Consider, for example, a state with a vanishing population
of the state |−1〉, i.e. with a large mean spin length along the z-direction. In this case,
we can for the calculation of the expectation value neglect the third row and column
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CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.3.: Spin-nematic and spin sphere: We show here examples of states that are
represented on the surface of the spin-nematic sphere (le�) and their cor-
responding representations on the spin sphere (right). On the spin-nematic
sphere the polar state (red) is represented as a point on the north pole. Start-
ing with a state with 〈Ŝx〉Q = 1 (blue point I) we show its representation
on both spheres for an evolution of the spinor phase (I - IV). Changing the
spinor phase by π/2 results in a state with no mean spin length resembling a
tilted polar state. For be�er visualization the covariance ellipsoid in the spin
sphere has been scaled down by a factor of 5.

13



2.2. COLLECTIVE SPINS

of the spin-1 observables. Within this approximation the operator Ŝ⊥(ϕL) is identical to
Q̂⊥(ϕL − π/2). Let us, for example, start with a state for which the transversal spin is
along the x-direction. In the Heisenberg picture a change of the spinor phase by π/2 will
turn the operator Ŝx −→ Q̂yz . But in this limit Q̂yz is identical to Ŝy . �us, for such state
a change of the spinor phase is identical to a change of the Larmor phase which we know
does not reduce the transversal spin length.

2.1.6. Spin-2

Since in the experiment we will also employ spin rotations in the F = 2 manifold, we
will brie�y give the relevant spin operators without going into details of a spin-2 system.
In matrix notation, the three spin operators are

ŜF=2
x =

1
2

©­­­­­«
0 2 0 0 0
2 0

√
6 0 0

0
√

6 0
√

6 0
0 0

√
6 0 2

0 0 0 2 0

ª®®®®®¬
, ŜF=2

y =
1
2

©­­­­­«
0 −2i 0 0 0
2i 0 −

√
6i 0 0

0
√

6i 0 −
√

6i 0
0 0

√
6i 0 −2i

0 0 0 2i 0

ª®®®®®¬
,

ŜF=2
z =

©­­­­­«
2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2

ª®®®®®¬
,

(2.19)

which ful�ll the SU(2) commutation relation and with that generate spin rotations in the
F = 2 hyper�ne manifold.

2.2. Collective spins

So far, we have been discussing the spin-1 system on a single-particle level. In a single
experimental realization, however, we deal with atom numbers on the order of ∼ 104

spin-1 particles. �erefore, we have to extend our description from the single- to the
many-particle case. As an example, we start with the operator Ŝz . Experimentally, we do
not resolve the atoms on a single-particle level, so it makes sense to de�ne the collective
operator Ŝz,coll. =

∑N
i=1 Ŝz,i which is just the sum of the individual single-particle operators

acting on the respective atom i for a total atom number N . In general, the Hilbert space
dimension of N spin-1 particles is rather large with d = 3N , if one uses the usual spin
algebra forN individual spin-1 particles. In our case, we can use that the particles are part
of a Bose-Einstein condensate. �is means that they are fundamentally indistinguishable
and the many-body state has to be symmetric under exchange of any two particles.
�is restricts the treatment of the collective spin to the fully symmetric subspace with
d = (N +2)(N +1)/2. In this symmetric subspace the collective operators are conveniently
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CHAPTER 2. THEORETICAL BACKGROUND

expressed in second quantization using the Jordan-Schwinger map [32, 33]

Ŝz = (â
†
+1, â

†
0, â
†
−1)Ŝz

©­«
â+1
â0
â−1

ª®¬
= â†+1â+1 − â

†
−1â−1,

(2.20)

where â†m (âm) is the creation (annihilation) operator in the magnetic substatem, obeying
the bosonic commutation relation [âm, â†n] = δmn. In second quantization, we denote the
basis state of this Fock space by

|ψ 〉 = |N+1,N0,N−1〉 , (2.21)

where NmF marks the atom number in the respective magnetic substate. Analogously,
we de�ne the collective pendants {Ŝx , Ŝy, Q̂yz, Q̂xz, Q̂zz, Q̂0, V̂x , V̂y} to the corresponding
single-particle operators described previously (for an explicit expression of the operators
in terms of creation and annihilation operators see Appendix C).

Importantly, the commutation relations between the operators are unchanged un-
der this mapping. Consequently, we can de�ne a generalized spin sphere spanned by
the operators {Ŝx , Ŝy, Ŝz} and generalized spin-nematic spheres spanned by the opera-
tors {Q̂⊥(ϕL), Ŝ⊥(ϕL), Q̂0} on which these collective operators are generators of rotations.
Here, we adopt the convention to normalize the axes by the total atom number N such
that each sphere has a radius of one.

2.3. Projective measurements
Before we go into more detail about the visualization of a many-body state, we will dis-
cuss here shortly our experimental measurement procedure which is sketched in Fig. 2.4.
Starting with an ensemble of N particles, we are measuring, in each experimental real-
ization, the atom numbers in each magnetic substate to gain information about the state
ρ̂. In second quantization, this is described by the measurement operators

N̂+1 = â†+1â+1 =
1
3 N̂ +

1
2 Ŝz +

1
4Q̂zz

N̂0 = â†0â0 =
1
3 N̂ −

1
2Q̂zz

N̂−1 = â†
−1â−1 =

1
3 N̂ −

1
2 Ŝz +

1
4Q̂zz

(2.22)

which we decomposed here in the spin-1 operator basis given previously. We addition-
ally introduced the operator for the total number N̂ =

∑1
m=−1 N̂m which is the second-

quantized analog of the identity operator. Such a measurement constitutes a standard
projective measurement [34], meaning that a successive measurement within the same
experimental realization would give the same outcome for the particle numbers in each
substate. In each realization, one will then measure in each substate a random atom
number Nm = 〈N̂m〉Exp, where the statistics is determined by the quantum state. Here,
we introduced the notation 〈·〉Exp to distinguish the result of a single measurement from
the quantum mechanical expectation value. One can use a linear combination of the
measured atom numbers to extract the value Sz and Qzz within this single realization.
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2.4. REPRESENTATION OF MANY-BODY STATES

Figure 2.4.: Sketch of a standard projective measurement scheme: Measuring an
ensemble of particles (blue dots) in a projective measurement yields in each
realization a random distribution of particles over the basis states of the cor-
responding Hilbert space. �e statistics of the measurement is determined by
the state ρ̂. Using a linear combination of the measured populations, we can
extract in each experimental realization the value of at least two commuting
spin-1 observables, for example Sz and Qzz . To gain information about con-
jugate observables, one has to change the measurement basis by applying a
unitary transformation Û prior to the projective measurement. In a Heisen-
berg picture, this means that, for example, the measurement outcome Sz is
changed to 〈Û †ŜzÛ 〉Exp, where 〈·〉Exp denotes the result of a single realization.

For example, the spin in z-direction is given via Sz = N − = N+1 − N−1. In a spin sphere,
this de�nes the readout axis as the Sz-axis along which we measure a given quantum
state. Equivalently, in a spin-nematic sphere, the readout axis with this measurement is
given by the Q0 axis.

Because we can measure in principle all populations with single-particle resolution, the
measurement operators in Eq. (2.22) and all linear combinations thereof must commute.
�us, each projective measurement in a d = 3 dimensional Hilbert space can only give us
information aboutd−1 = 2 commuting spin-1 operators, like in this case Sz andQzz , since
one piece of information is always reserved for the total atom number [35]. If we want
to measure additional observables, we have to apply unitary transformations Û prior to
the readout where the measured atom number is then determined by N ′m = 〈Û

†N̂mÛ 〉Exp.
For example, a π/2 spin rotation around Sx changes the readout axis in the spin sphere
from Sz to Sy .

Suppose, that the N particles are in a product state. �en such a measurement is
equivalent to N independent measurements on identically prepared particles. In the
single-particle case, the state is determined by the expectation value of the basis set of
spin-1 observables. �en each measurement gives us an estimate of this value, where
the precision is determined by the total number of atoms used for the estimation. If the
preparation of the state is reproducible, one can also increase the statistic by averaging
over multiple realizations. A�er measurements in at leastd+1 = 4 di�erent measurement
bases we can estimate the full single-particle density matrix [35].

2.4. Representation of many-body states
A�er this short detour to recapitulate the basic properties of projective measurements,
we now come back to consider in more detail the representation of many-body states.
We recall that for the representation of a spin-1 system, which is basically the symmetric
subspace of two spin-1/2 particles, we could either de�ne additional quadrupole operators
and describe the state by its quantum mechanical mean given a complete set of operators,
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Figure 2.5.: Coherent polar state for di�erent atom numbers: Here, the graphical
representation of the coherent polar state for di�erent atom numbers is shown.
On a generalized spin sphere, we represent the state via a two-dimensional
probability distribution which corresponds to the measurement statistics
along the respective direction. For higher atom numbers this results in a
two dimensional Gaussian distribution. As we normalize the spin to the total
number, the width of this distribution decreases as 1/

√
N .

or we could use the mean of the spin operators together with their covariance for visu-
alization. �e same now applies to the representation of a many-body state consisting
of N spin-1 particle. We could either de�ne additional spin-N operators to describe the
state, which is not feasible, or we use the collective operators together with all higher
moments and their correlations. �is will result in the Wigner and Husimi distribution
which are routinely used in quantum optics for the representation of many-body states.

2.4.1. Coherent spin states

We start with the important class of coherent spin states, which are usually the starting
point of our experiments. �ese states are classical in the sense that each particle is
in the same single-particle state and, thus, features no quantum correlations. We have
already discussed such a state in the context of projective measurements, but we will now
take a many-body point of view and look at the measurement statistics that is expected
from such a state. As an example, we take a coherent polar state, where the quantum
state is given by |α〉 = (|0〉)⊗N . We have seen that this state has a vanishing mean spin
length in all spin directions as well as vanishing �uctuations in the z-direction. But it
features �uctuations in the transversal spin direction. To measure the transversal spin
in a projective measurement scheme as described above, one would �rst employ a π/2
spin rotation, which transform the initial state into a transverse polar state and then
evaluate the atom number di�erence N − = N+1 −N−1. �e measurement statistics of N −
is described by a binomial distribution

P(N −) =

(
N

N
2 + N

−

)
p

N
2 +N

−

+1 p
N
2 −N

−

−1 (2.23)

where p±1 denotes the probability to �nd a particle in the state |±1〉. For the transverse
polar state we have an equal probability ofp+1 = p−1 = 0.5 to measure a particle in |+1〉 or
|−1〉 and, thus, for large N the distribution becomes Gaussian with mean 〈N −〉 = 〈Ŝ⊥〉Q =
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2.4. REPRESENTATION OF MANY-BODY STATES

0 and variance ∆2N − = ∆2S⊥ = N along each transversal spin direction. Consequently,
we represent the state by a two dimensional distribution in a generalized spin sphere as
shown in Fig. 2.5. As explained before, we normalize the spin to the total atom number
N and as a consequence the standard deviation of the plo�ed distribution decreases
as 1/

√
N for higher atom numbers. �ese �uctuations are the reason for the standard

quantum limit in precision measurements. Similarly, we can represent this coherent state
on a generalized spin nematic sphere. While the state has no �uctuations along Q̂0, it
has Gaussian �uctuations along Ŝ⊥ and Q̂⊥. �us, the state is represented by a Gaussian
distribution a the north pole of the spin-nematic sphere.

An important feature of coherent states is that they are minimal uncertainty states.
�at is, given the state can be represented on the surface of an SU(2) subspace, their
variances saturate the uncertainty limit of two conjugate observables. For example, the
polar state can be represented on the pole of the spin nematic sphere. �e variances of
the two conjugate observables Ŝ⊥ and Q̂⊥ obey the uncertainty relation [36]

∆2S⊥∆
2Q⊥ ≥

1
4
��〈[Ŝ⊥, Q̂⊥]〉Q��2

polar
= N 2

(2.24)

which is exactly satis�ed by the coherent polar state.

2.4.2. The Wigner distribution

For the coherent polar state we have calculated explicitly its probability distribution and
used it to represent the state on a given SU(2) subspace. Since the distribution is Gaussian
and the �uctuations are uncorrelated between di�erent measurement directions, the cal-
culation could be carried out using classical statistics. Even though this two-dimensional
distribution can never be directly measured, because one cannot simultaneously measure
two noncommuting observables with arbitrary precision, the marginals of this distri-
bution give the correct prediction for the probability distribution in the corresponding
measurement basis. To generalize this representation via probability distributions to
general quantum states, we need a way to calculate it directly from a given density ma-
trix. For later purposes we focus this discussion on the observables Ŝx and Q̂yz , but the
treatment can be generalized to any observables.

Even though one cannot measure both observables simultaneously, we can always
measure a linear combination of the observables, i.e. k1Ŝx +k2Q̂yz . A single experimental
realization gives us then a random number k1Sx + k2Qyz drawn form the corresponding
marginal probability distribution. A�er acquiring su�cient measurement statistics for a
given pair of k1 and k2, one can estimate the characteristic function known from statistics
as the expectation value of [37]

χ (k1,k2) = 〈ei(k1Sx+k2Qyz )〉. (2.25)

In classical statistics, this characteristic function is calculated starting from a two-dimensional
probability distribution p(Sx ,Qyz) with

χ (k1,k2) =

∫
dSxdQyzei(k1Sx+k2Qyz )p(Sx ,Qyz). (2.26)
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�us, the characteristic function is the Fourier transform ofp(Sx ,Qyz). �erefore, applying
an inverse Fourier transform on the characteristic function will yield the original two-
dimensional probability distribution.

Similarly in quantum mechanics, one can use the density matrix to calculate the char-
acteristic function, i.e.

χQ(k1,k2) = 〈ei(k1Ŝx+k2Q̂yz )〉Q. (2.27)

One now applies the inverse Fourier transform to this quantum mechanical version of
the characteristic function to get, in analogy to the classical case, a two-dimensional
distribution

W (Sx ,Qyz) =
1

4π 2

∫
dk1dk2e−i(k1Sx+k2Qyz )χQ(k1,k2). (2.28)

�is is the famous Wigner function or quasiprobability distribution, originally introduced
in analogy to a classical phase space distribution [38]. It is widely used in quantum optics
for representing the quantum state of light in terms of the two electromagnetic �eld
quadratures. Note that the de�nition of the Wigner function presented here does not
take into account that the underlying phase space is spherical. However, using spherical
approaches such as in [39] is anyway problematic since a spin-1 state is not constrained
to the surface of the sphere. Our de�nition rather yields the projection of the Wigner
function to a two-dimensional surface. �is is still a valid approach as the de�nition of
the Wigner function just involves that its marginals provide the correct measurement
statistics in the respective measurement basis [37]. �us, the notation used here is also
slightly di�erent to what is commonly found in quantum optics literature, for example
in [40]. To recover the standard notation one needs to de�ne the complex parameter
β = (k1 + ik2)/

√
2 and employ a Holstein-Primako� approximation [41]. �is means that

the Wigner distribution has to be localized enough on the surface of the spin-nematic
sphere such that the surface can be approximated by a �at phase space.

With Eq. (2.28), the Wigner function provides a representation of the quantum state
as a two-dimensional quasiprobability distribution in a phase space spanned by the two
observables Ŝx and Q̂yz . In general, for a complete description of the state one would need
to generalize the distribution to include all spin-1 observables, which is of course not very
useful for a graphical illustration. In many cases, however, previous knowledge about the
dynamics allows restricting the phase space to a certain subspace of observables where
the quantum features of the state will be prominent. Even though the Wigner function
is a quasiprobability distribution, it ful�lls certain important aspects of a probability
distribution. Mainly it is normalized, i.e.

∫
dSx dQyzW (Sx ,Qyz) = 1 and the marginals of

the distribution give the correct probability distribution for the respective observables,
e.g. p(Sx ) =

∫
dQyzW (Sx ,Qyz). �e last point is a unique feature of the Wigner function

which sets it apart from other quantum mechanical quasiprobability distributions [42].
�is means, given a quantum state ρ̂ one can use the Wigner formalism to predict the
measurement statistics of an ideal projective measurement for example of Sx .

What makes the Wigner function a quasiprobability distribution is the fact that it
can also have negative values. �is is because we used a quantum density matrix to
calculate the characteristic function, so the inverse Fourier transform does, in general,
not yield a classical probability distribution. It turns out that the negativities of the Wigner
function can be associated with highly correlated, nonclassical states [43], for example
the cat state [37], which is a maximally entangled state. Since we cannot measure the
full Wigner function directly but only its marginals these negativities do not introduce
inconsistencies between measurements and this representation.
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�e probability distribution we calculated before for the coherent polar state is also
a Wigner distribution and belongs to the important class of Gaussian states. �ese are
states that have Gaussian shaped Wigner functions. �ey are very close to classical states
in the sense that the Wigner function is a true probability distribution and the quantum
correlations are not that strong to introduce negativities.

In an experiment one usually wants to turn the argument around, i.e. from a given
measurement statistics one wants to �nd out the underlying quantum state or equiva-
lently its Wigner distribution. For this one has to employ quantum state tomography,
which means to measure the probability distribution in di�erent measurement bases, i.e.
to measure the di�erent marginals. Out of the marginals of the distribution one can then
a�empt to reconstruct the original Wigner function via various algorithms [44].

2.4.3. The Husimi distribution

�e Wigner function is not the only way to represent a quantum state but there exist a
whole range of quasiprobability distributions which provide an equivalent representation.
Another one commonly used is the so-called Husimi Q function [45]. One way to de�ne
this distribution is via coherent states as they form an overcomplete basis of the Hilbert
space. �e Husimi function for the phase space, spanned by Ŝx and Q̂yx , is given by [46]

Q(Sx ,Qyz) = c
∑
α

α

〈
Sx ,Qyz

��ρ̂ ��Sx ,Qyz

〉
α
, (2.29)

where
��Sx ,Qyz

〉
α

is a coherent state with expectation values 〈Ŝx〉Q = Sx and 〈Q̂yz〉Q = Qyz .
Since the mean value of the two operators does in general not uniquely identify a coherent
state in a spin-1 system, we label the di�erent states withα . �e prefactor c is chosen such
that the distribution is normalized, i.e.

∫
dSx dQyz Q(Sx ,Qyz) = 1. �is distribution is o�en

easier to calculate than the Wigner function and provides a more intuitive representation
since it is always positive, which can be veri�ed by inserting the de�nition of a general
density matrix into Eq. (2.29)

Q(Sx ,Qyz) = c
∑
α

α

〈
Sx ,Qyz

��∑
i

Pi |ψi〉 〈ψi |
��Sx ,Qyz

〉
α

= c
∑
α ,i

Pi
��
α

〈
Sx ,Qyz |ψi

〉��2 . (2.30)

Even though the Husimi function is normalized and non-negative it is still a quasiprob-
ability distribution because, in contrast to the Wigner function, its marginals do not
provide the correct measurement statistics for a corresponding projective measurement.
Comparing the marginals of both distributions it turns out the one from the Husimi
distribution have a larger width. In fact, one can show that the Husimi function is the
Wigner distribution convoluted with a Gaussian �lter that has the width of a coherent
state [46], i.e.

Q(Sx ,Qyz) ∝

∫
dS′xdQ

′
yzW (S

′
x ,Q

′
yz)e−

1
2N [Sx+Qyz−(S

′
x+Q

′
yz )]

2
. (2.31)

�is smoothing is responsible for removing the negativities of the Wigner function but
it also broadens the whole distribution. For a comparison between the Husimi and the
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Figure 2.6.: Wigner and Husimi function: Comparison between the Wigner (le�) and
the Husimi (right) representation for the same coherent (red) and squeezed
state (blue). For more examples see [37]

Wigner distribution for a coherent and a squeezed state, i.e. a Gaussian state with reduced
�uctuations along one observable, see Fig. 2.6. Since this �ltering is reversible, the Husimi
function is equivalent to the Wigner function and provides a complete representation of
the quantum state.

Even though the Husimi distribution does not yield the correct marginals associated
with a projective measurement as described above, we will later (Sec. 8.1) see that it is
indeed connected to a more general type of measurement, where it provides the correct
measurement statistics.

2.5. �antum correlations
Entanglement has already been recognized by Schrödinger as a central concept of quan-
tum mechanics which sets it apart from classical theories [47, 48]. Besides the philo-
sophical implications that have been discussed since its discovery [49], entanglement is
nowadays considered a key resource for future quantum enhanced technologies [50]. For
the discussion of quantum correlations we choose here the historic approach by start-
ing with steering, a term coined by Schrödinger as a response to the famous Einstein-
Podolsky-Rosen (EPR) paradox [49], which �rst placed entanglement into the focus of
interest.

2.5.1. EPR-Steering
Even though the EPR paradox has already been widely discussed in literature, we will
outline here the basic argument and its implications as it provides an insightful introduc-
tion to entanglement and its distinguishing features. Let us consider two systems, A and
B, as well as two non-commuting observables Q̂X and P̂X (X ∈ {A,B})with

[
Q̂X , P̂X

]
, 0.

�ese observables could either be position and momentum as in the original argument or
conjugate spin observables as described before. Because of the uncertainty relation it is
then impossible in a single subsystem, e.g. A, to measure both observables with arbitrary
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Figure 2.7.: �e EPR paradox: A source emits two highly entangled particles. Measur-
ing the position and momentum of each particle alone gives the distribution
illustrated by the shaded area (le� and right) which is consistent with the
Heisenberg uncertainty relation. However, each result of a position measure-
ment in system A is perfectly correlated with the result in system B, while the
results for the momentum measurements are perfectly anticorrelated. Using
the information in system B to infer the results in system A gives in the per-
fect case a point-like distribution (middle) which surpasses the Heisenberg
bound of the single system.

precision. Or, in other words, there is no way of simultaneously knowing precisely the
value of Q̂A and P̂A, because, as Feynman put it, “nature herself does not even know” [51].

At the same time, quantum mechanics allows for correlations such that if we choose to
measure the observable Q̂B in system B and obtain the resultQB, we �nd that it is perfectly
correlated with the one in A, i.e. QA = QB. �e knowledge gained in system B, therefore,
allows us to predict the measurement result ofQA in A with certainty. Analogously, if we
decide to measure on the next identically prepared system the observable P̂B, we �nd that
the results are perfectly anticorrelated, i.e. PA = −PB as sketched in Fig. 2.7. �antum
mechanically this is possible, because the operators Q̂A−Q̂B and P̂A+P̂B actually commute,
i.e.

[
Q̂A − Q̂B, P̂A + P̂B

]
= 0.

In principle the two systems can be in�nitely far apart. From a classical point of view,
one would then assume that a measurement in B does not in�uence A (locality). �us, it
should be possible to a�ribute simultaneously a precise value for both observables in sys-
tem A without disturbing this system (realism), which is in con�ict with the uncertainty
relation. �us, EPR correctly concluded that the completeness of quantum mechanics is
at odds with the assumptions of local realism. In a response to this work, Schrödinger
recognized that such a situation could only arise if the two system at one point in time
have interacted and in the process became entangled [47]. For such an entangled state
a local description of A and B is not correct to understand what happens globally and a
measurement on system B will therefore instantaneously a�ect the state in A, for which
he coined the term steering.

It is important to note that even though quantum mechanics has this nonlocal prop-
erty, this is not in contradiction to the theory of relativity, because the measurement
choice, for example in B, cannot be used to send any information to A. Irrespective of the
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measurement choice one will always �nd the same measurement statistics in A. Only by
comparing the results, via classical communication, one can verify that the two systems
must have been entangled. �is is referred to as no-signaling [52]. A�er Bell showed,
that it is indeed possible to experimentally test the assumptions of local realism [53], it
is nowadays, a�er many Bell tests [54, 55, 56], well established that quantum mechanics
is complete and we need to give up our idea of local realism.

2.5.2. Steering criterion

Experimentally, it is of course impossible to measure the perfect correlations envisioned
in the EPR paradox. One can, however, extend the original argument to include the
more realistic scenario of imperfect correlations [20]. As the local observables in each
subsystems are non-commuting, their measurement statistics have to ful�ll the local
uncertainty relation. We get, for example, for the variance product in system A [36]

∆2QA∆
2PA ≥

1
4
��〈[Q̂A, P̂A]〉Q

��2 = cA. (2.32)

Suppose that system A and B always measure the same observable, then the information
gained in B is used to get only an estimate for the measurement result in A, i.e.

QA,inf = дQB PA,inf = h PB, (2.33)

where in the simplest case the measurement results in B are just modi�ed by prefactors
д and h as described here. �e precision of this estimate is quanti�ed by the inference
variance de�ned as ∆2QA|B = ∆2(QA − QA,inf). If then the product of the two inference
variances is smaller than the bound given by the local uncertainty, then one arrives at
similar conclusions as in the original EPR argument. One therefore de�nes the steering
inequality

SA|B = ∆2QA|B∆
2PA|B ≥ cA, (2.34)

where a steering product SA|B < cA veri�es so-called EPR steering, which we label as A
is steered by B. In this sense, EPR steering is a directional entanglement measure and
there are indeed states which feature only one-way steering, where A is steered by B but
not the other way around [57]. �e quantum mechanical bound on the steering product
is determined by the commutation relation of the inference operators[

Q̂A − дQ̂B, P̂A − hP̂B
]
=

[
Q̂A, P̂A

]
+ дh

[
Q̂B, P̂B

]
, (2.35)

which is why one needs a combination of correlation in one basis (e.g. д > 0) and
anticorrelation in the conjugate basis (h < 0) in order to violate the steering inequality.
In principle, any post-processing of the measurement results obtained in B is allowed to
get an optimal estimate of the measurement result in A, since such classical operations
cannot introduce any entanglement. �e post-processing just in�uences the quantum
mechanical bound via the commutation relation of the inference operators.

2.5.3. �antum information and LOCC

EPR steering correlations lie at the heart of many quantum information protocols. �ese
protocols are usually discussed under the so-called LOCC paradigm standing for “local
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operations and classical communication”. �at is, given the two systems A and B, o�en
called Alice and Bob, share an entangled state, they are only allowed to use local opera-
tions and communicate via classical means. With these operations they cannot increase
the overall entanglement but can try to use their entangled resource to accomplish a
given task be�er than it would be possible if they only had classically correlated states.

In this context, EPR steering is also called a one-sided device independent protocol. In
this scenario, Bob tries to convince Alice that they share an entangled quantum resource.
A�er agreeing on the measurement protocol, only Alice has to ensure that the correct
observables are measured. Bob sends her his estimates and only if he has measured the
same observables, he is able to predict her results. If Bob just sends her random data, uses
a wrong post processing or measures the wrong observables this can only increase the
inference variance. �erefore, Alice does not care how the estimates have been obtained
but as soon as her measurement results are predicted be�er than the local uncertainty
relation, she knows that their states are entangled.

Based on this idea and the fact that the entanglement is li�ed as soon as one part
of the quantum resource is measured, one can envision di�erent protocols for quantum
cryptography based on EPR steering [18]. �e idea behind these protocols is that Alice and
Bob want to certify that no one intercepted their quantum channel. If someone measured
the state in between, Bob would not be able to predict the measurement outcomes of
Alice with the required accuracy. �us, they can use steering to certify that their quantum
channel has not been disturbed and then send each other keys via this secure channel
to encode their messages. While one may be concerned about the e�ciency of such a
protocol, there are also other tasks for which EPR correlations are vital, such as quantum
teleportation [58] and quantum information processing [17].

As a short remark, a Bell state provides even more possibilities and a Bell test is, in
this context, referred to as a two-sided device independent protocol. �is is because for
EPR steering Alice has to assume that she measures two noncommuting observables
which obey the quantum mechanical uncertainty relation. In a Bell test, an independent
observer could evaluate the results which are sent to him by Alice and Bob and decide
if they violate a Bell inequality statistical arguments without knowing the uncertainty
relations of the corresponding operators. �is comes however at a cost of a very fragile
Bell state [20].

2.5.4. Entanglement

EPR steering, as it turns out, is already a strong form of entanglement in the sense that all
steerable states are entangled but not all entangled states violate a steering inequality. In
general, entangled states are de�ned as being the opposite to separable states. �at means
that the state of the total system |ψ 〉, consisting of subsystems A and B, is entangled if it
cannot be wri�en in biseparable form, i.e. as a product state [59]

|ψ 〉 , |ψA〉 ⊗ |ψB〉 , (2.36)

or equivalently in terms of density matrices

ρ̂ ,
∑
i

Pi ρ̂A,i ⊗ ρ̂B,i , (2.37)
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Figure 2.8.: Sketch for the di�erent entanglement de�nitions: While for bipartite
system only one notion of entanglement exists, the situation for multipartite
systems is more involved and di�erent notions of entanglement exist. In the
context of this thesis, we will discuss the detection of genuine multipartite
entanglement, where the de�nition of the tripartite case is sketched in the
last panel. In contrast, the de�nition of full tripartite inseparability is depicted
in the middle.

with
∑

i Pi = 1. It has also been sometimes de�ned in positive terms, that a state is
entangled if it is a resource for a nonclassical task [60]. Both de�nitions are, in practice,
not very useful and even theoretically it is o�en hard to determine whether a given state
can be wri�en as a product state, let alone to predict whether it is a useful resource.
�us, there is an ongoing theoretical e�ort to �nd criteria that are su�cient to verify
entanglement, but which provide in general not a necessary condition [61, 60].

While many quantum information protocols rely on EPR steering, entanglement itself
is already a useful resource for certain tasks. Fig. 2.6 intruduced already a so-called
squeezed state which features a reduction of �uctuations in one observable at the cost
of increased �uctuations in the conjugate observable. �e reduced �uctuations of these
states can be used for quantum enhanced precision measurements [62, 63, 9], e.g. to probe
external magnetic �elds with a precision beyond classical limits [64]. Pictorially speaking,
this is possible because the �eld is not probed with a collection of independent atoms,
but with an ensemble of correlated, i.e. entangled, atoms which increases the sensitivity
on the parameters of the external �eld [10, 11].

Multipartite systems

We can also extend the concept of entanglement from the bipartite scenario to multipartite
situations. While for pure states many de�nitions are equivalent, there are in general
di�erent notions of entanglement for mixed states [65]. In close analogy to above, we
can de�ne bipartite entanglement by sorting the subsystems of anm-partite system into
two sets Xα and its conjugate Xα , where α labels the speci�c bipartition. If one can show
that the state is entangled across all bipartitions, that is for each partition α , we cannot
write the state in biseparable form

ρ̂ ,
∑
k

ηα ,k ρ̂Xα ,k ⊗ ρ̂Xα ,k
∀α , (2.38)
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then the state is called “full m-partite inseparable” [66, 67]. If, in addition, it cannot be
wri�en as a superposition of biseparable states

ρ̂ ,
∑
α

Pα
∑
k

ηα ,k ρ̂Xα ,k ⊗ ρ̂Xα ,k
, (2.39)

the state is genuine m-partite entangled [68]. For a graphical representation of these
de�nitions see Fig. 2.8. Genuine multipartite entangled states play an important role for
spatially distributed quantum protocols such as quantum communication networks [69,
70] and measurement based quantum computation [71, 72] via so-called graph states [73].
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3. Experimental system and control

A�er presenting the basic theoretical aspects of this thesis, we will now focus on the
experimental system, a spinor Bose-Einstein condensate of 87Rb. We will shortly sum-
marize the condensation process and provide details about the control of the spin states
and the measurement procedure. A main focus for the design of the experimental setup
has been a high stability, such that the experiment is able to run una�ended for days in
order to acquire a high statistics which compensates the comparatively long repetition
interval of about 37 s. A sketch of the relevant experimental components can be found
in Fig. 3.1.

3.1. Bose-Einstein condensation and trapping
configurations

Here, a short overview of the condensation sequence is provided, where further details can
be found in earlier publications [74, 75, 76, 77, 78, 79]. Each experimental realization starts
with a 3D magneto-optical trap (MOT) that is loaded from a 2D MOT in about 7 s; the
actual loading time of the MOT is shorter, however, some time is added to keep the length
of each experimental sequence roughly �xed to 37 s for stability. A�er a short sequence of
sub-Doppler cooling in an optical molasses, the atoms are loaded in a magnetic trap with
a time orbiting potential (TOP trap) [80]. �e magnetic trap is designed such that the low-
�eld seeking (F ,mF) = (1,−1) state is trapped, while any residual F = 2 atoms are pushed
out by shortly switching on the MOT beams. We initiate evaporative cooling by lowering
the strength of the TOP trap such that atoms with a high kinetic energy are expelled. In
this way, we produce a�er ≈ 25 s an atomic sample of about 106 atoms near the critical
temperature for condensation. �e �nal trap is a crossed optical dipole trap consisting
of two far red-detuned focused laser beams (referred to as waveguide and XDT) emi�ed
from a single 1030 nm Yb:Yag source (Innolight Corona). For a reliable transfer of the
atoms the crossing point of the two beams is below the position of the magnetic trap. By
lowering the strength of the magnetic trap the atoms are descending due to gravity and
get caught in the dipole trap. In the end, another evaporative cooling stage is implemented
by lowering the power of the crossed dipole beams to reach condensation. Depending
on this last condensation ramp we can tune the �nal atom number between ≈ 1, 000 and
≈ 100, 000 atoms in the condensate. A�er condensation,the typical temperature of the
atomic cloud is about 20 nK, compared to a critical temperature of ≈ 150 nK for 10.000
atoms in the crossed dipole trap. A�er condensation, the atoms are loaded into the �nal
trap geometry. Depending on the requirements of the experiment, we choose in the
context of this work between two di�erent se�ings.

One trap geometry is a crossed-dipole trap where the energy spacing of the external
degrees of freedom is large enough such that they are largely frozen but where we can
still individually address speci�c spatial modes via the interactions between the atoms.
For this trap geometry we ramp the power of both beams back up a�er evaporation.
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Figure 3.1.: Experimental components: a) Sketch of the experimental setup. �e BEC
is prepared inside a glass cell where the atoms are trapped within a crossed
optical dipole trap. �is trap consists of two far red-detuned laser beams re-
ferred to as waveguide (WG) and XDT. In the vertical z-direction we apply
a homogeneous magnetic �eld along which we de�ne the quantization axis.
To manipulate the spin states of the atoms we employ microwave (mw) and
radiofrequency (rf) �elds. For detection, high intensity absorption imaging is
used with an optical resolution of ≈ 1µm. b) Level scheme of 87Rb in the elec-
tronic groundstate including the �rst-order Zeeman shi�. To couple the two
hyper�ne manifolds we use mw �elds at a frequency of ≈ 6.8 GHz. �e mag-
netic substates are coupled via rf �elds. c) Typical absorption images of the
condensate in the crossed-dipole trap a�er expansion for the two hyper�ne
manifolds; the state (2, 0) is not populated here.

�is results in trapping frequencies of (ω‖,ω⊥) ≈ 2π × (50, 286)Hz, where we can adjust
the �nal value by the power of the beams. �e second trap geometry is a quasi one-
dimensional trapping potential where the BEC has a spatial extension in longitudinal
direction on the order of 400µm. For this, we adiabatically lower the XDT to load the
BEC into the elongated dipole trap provided by the waveguide with trapping frequencies
(ω‖,ω⊥) ≈ 2π×(2, 250)Hz. For the measurement of the trap frequencies see Appendix A.1.

3.2. Magnetic field shi�s

During the experiments, we apply a homogeneous magnetic bias �eld B in z-direction
along which we de�ne our quantization axis. �is �eld shi�s the energy of the magnetic
substates in both hyper�ne manifolds due to the Zeeman e�ect. We take into account
the �rst- and second-order shi� given by

EZ/h = д1,FmFB + д2,F(4 −m2
F)B

2 (3.1)
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with the Planck constant h. �e �rst- and second-order g-factors are

д1,F ≈

{
−700 kHz/G for F = 1
702 kHz/G for F = 2

д2,F ≈

{
−72 Hz/G2 for F = 1
72 Hz/G2 for F = 2

(3.2)

While the absolute value of the g-factors is nearly the same in both manifolds, their sign
is di�erent, which will become important for the addressability of the two manifolds.
An explicit calculation of these parameters can be found in [79]. For the experiments
reported here, we usually apply a magnetic �eld between 0.8 and 2 G which is actively
stabilized using a �uxgate sensor mounted close to the glass cell. �is leads to a shot-to-
shot stability of about 50µG (see Appendix A.2). For an overview of the energy levels of
the F = 1 and F = 2 manifold including the �rst-order Zeeman shi� see Fig. 3.1b).

Using the spin operators de�ned before, the Hamiltonian for the magnetic �eld shi�s
in the F = 1 manifold is given by

ĤB = hpBŜz − h
qB
2 Q̂0 (3.3)

with pB = д1,1B and qB = −д2,1B
2. �us, the �rst-order Zeeman shi� leads to a dynamical

evolution of the Larmor phase (Larmor precession), while the second-order Zeeman shi�
causes a dynamical evolution of the spinor phase.

3.3. Imaging and post-processing
�e populations in the di�erent magnetic substates are measured with high intensity
absorption imaging [81, 82], which, in addition, is selective on the F = 1 and F = 2 hy-
per�ne state. To spatially separate the di�erent magnetic substates, we apply a magnetic
�eld gradient (Stern-Gerlach pulse) along the z-direction while switching o� the dipole
traps. We �rst image the atoms in the F = 2 manifold by employing light that is resonant
with an excited electronic state (D2 light). Each imaging pulse has typically a duration of
15µs during which about 300 photons are sca�ered by each atom. �us, the atoms are
subsequently blown out of focus by the imaging light. To record the atoms in the atoms
in the F = 1 manifold light resonant with the F = 1 manifold is added for the following
image. To reduce noise contributions from the imaging, we can also leave out the �rst
pulse and image both manifolds in one image. A�erwards we take two reference images
without any atoms which are used to reconstruct the atomic densities. Example images
are shown in Fig. 3.1c). For detection, we use the fast kinetics mode of the CCD camera
(Princeton Instruments PIXIS 1024BR) which allows us to take four consecutive images
with a separation of ≈ 1.2 ms. At the end of the imaging sequence a small part of the chip
is not illuminated by any imaging light and is used to estimate the background counts
of the camera.

For the evaluation region shown in Fig. 3.1c) the precision of the measurement corre-
sponds to ≈ ±35 atoms in each magnetic substate due to photon shot noise contributions
from the absorption and the reference image. �e imaging system has a magni�cation
factor of 31 such that each pixel on the camera corresponds to 0.42µm in the object plane
of the atoms. For the imaging sequence we position the objective as close as possible
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to the glass cell to achieve a high numerical aperture of NA = 0.45 which results in
an optical resolution of ≈1µm. �is sequence realizes a projective measurement as de-
scribed before, where the measurement of the particles in the di�erent magnetic substates
corresponds to a measurement along the Sz-direction of the spin sphere.

To reduce the noise on the atomic densities caused by optical fringes, we employ a
fringe removal algorithm as detailed in [83]. For that we set up a library of typically 700
reference images and construct an optimal reference image via linear combination. �is
optimal reference image is optimized on an empty region of the absorption image, i.e.
a region where no atoms are detected. Because of the averaging over many reference
images, the photon shot noise on the optimal reference image is largely reduced such
that its contribution becomes negligible. �us, the overall photon shot noise is reduced
by a factor of

√
2, which increases the measurement precision to about ±25 atoms in each

magnetic substate.

Expansion in waveguide

In the crossed dipole trap the condensate typically has a spatial extension of 2 to 3µm in
transversal direction and 7 to 10µm in longitudinal direction which corresponds to the
�omas-Fermi radius. For atom numbers between 10.000 and 40.000, which we typically
load into this trap geometry, this results in a very high optical density which would
require very high intensities of the imaging light (> 100 Isat, where Isat is the saturation
intensity). Such high intensities largely increase the imaging noise. �us, in order to get
a reasonable optical density of 1 at intensities of ≈ 20 Isat, we switch o� the XDT prior
to the imaging. We subsequently let the condensate expand in the remaining waveguide
potential for up to 10 ms, a�er which the condensate has reached a spatial extension of
typically 60 to 100µm. In addition to lowering the optical density, the expansion eases
the detection of spatial structures in longitudinal direction that may have evolved during
the dynamics. As the the maximal expansion time of 10 ms is very short compared to
the π/2 time of the longitudinal trap frequency which would be on the order of 100 ms,
this expansion does not give us any momentum information of the condensate [84] but
corresponds to a self-similar expansion of the atomic cloud [85].

3.4. Rf spin rotations

To induce spin rotations in the two hyper�ne manifolds we use magnetic radiofre-
quency (rf) �elds, where we can choose between two rf coils to apply the signal as
shown in Fig. 3.1a). We generate the rf signal with an arbitrary function generator
(Agilent 33522A) which is a�erwards ampli�ed (for a technical noise analysis of the
rf signal see Appendix A.4). �e rf coil generates a linearly oscillating magnetic �eld
®Brf(t) = Brf cos(ωrft + ϕrf)®ey perpendicular to the o�set �eld, e.g. along the y-direction.
Here, ωrf and ϕrf denote the frequency and phase of the rf �eld, respectively. In the F = 1
manifold the interaction with the atoms is described by the time-dependent Hamiltonian

Ĥrf(t) = 2~Ωrf,0 cos(ωrft + ϕrf)Ŝy, (3.4)

with the reduced Planck constant ~ = h/2π and the resonant Rabi frequency given by
Ωrf,0 = |д1,1 |Brf/2.
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To remove the time dependence we transform the system into the rotating frame of the
rf-pulse with the same orientation as the Larmor precession as determined by sgn(д1,1).
If the rf-pulse is resonant, i.e. ωrf = 2π · pB, this yields

Ĥ rot
rf = e−iωrftŜzĤrf eiωrftŜz

= 2~Ωrf,0 cos(ωrft + ϕrf)
[
cos(ωrft)Ŝy − sin(ωrft)Ŝx

]
= ~Ωrf,0

[
cos(ϕrf)Ŝy − sin(ϕrf)Ŝx

]
.

(3.5)

�us, a resonant rf pulse induces spin rotations (Rabi oscillations) with a rotation fre-
quency given by the resonant Rabi frequency Ωrf,0. �e rotation axis is determined by the
phase of the rf �eld. For the last line we have used the rotating wave approximation and
neglected terms with frequency 2ωrf. �is is well justi�ed as long as the Rabi frequency
is much lower than the rf frequency, i.e. Ωrf,0 � ωrf [86]. Intuitively, this approximation
assumes that the rotation axis changes its orientation very fast compared to the rotation
of the state around this axis and therefore the e�ect on the state is averaged out.

If the rf frequency does not match the resonance frequency ω0 = pB/~, the state will,
in the rotating frame, still precess around the Sz-axis. �is is described by −~δŜz with
the detuning δ = ω0 − ωrf. �us, the evolution of the internal state is governed by the
Hamiltonian

Ĥ rot
B = ~Ωrf,0

[
cos(ϕrf)Ŝy − sin(ϕrf)Ŝx

]
− ~δŜz . (3.6)

�erefore, for an o�-resonant rf pulse the e�ective axis of rotation is tilted out of the
S⊥-plane.

Strictly speaking, the rotation axis for the rf pulse is de�ned by the phase di�erence
between the Larmor phase and the rf phase. Since a�er condensation all atoms are in
the state (1,−1) the Larmor phase is initially unde�ned. We, thus, de�ne the �rst rf pulse
such that it induces a rotation around the Sy axis of the spin sphere. �e �rst rf pulse
then provides the phase reference for all subsequent spin rotations. �e same argument
holds when we prepare the polar state as the initial state.

We can apply the same treatment to the F = 2 manifold, by changing the operators
to the corresponding spin-2 operators and taking into account the di�erent sign of the
g-factor. Because the absolute value of the g-factors in both manifolds are similar, an rf
�eld tuned into resonance with the F = 1 manifold will also induce o�-resonant spin
rotation in F = 2. �is will be discussed in more detail in 6.2.1.

Long rf rotations and the second-order Zeeman shi�

So far we have neglected the e�ect of the second-order Zeeman shi� for the spin rotations.
For the typical experimental parameters the rf Rabi frequency is on the order of Ωrf,0 ≈
2π · 7 kHz while the second-order Zeeman shi� is on the order of 2π · 100 Hz. �erefore,
this shi� will only become relevant a�er several Rabi cycles. To observe this e�ect we
induce spin rotations starting in the state (1,−1) and record the z-projection of the spin,
i.e. the atom number imbalance N −/N = (N1,+1 − N1,−1)/N normalized to the total atom
number N . Without the second-order Zeeman shi� we would expect Rabi oscillations
i.e.

N −(trf)

N
= − cos(Ωrf,0 · trf), (3.7)
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Figure 3.2.: Rabi oscillations in F = 1: Experimentally, we observe a modulation of the
imbalance N −/N for long rf pulse durations (trf). From a �t (blue line) we
extract a fast frequency of Ωrf,0 = 2π · 6.6 kHz, corresponding to the Rabi
frequency, and a modulation frequency ofωQ = 2π ·71 Hz which is connected
to the second-order Zeeman shi�.

where tr f is the duration of the rf pulse. Experimentally, however, we �nd a modulated
Rabi oscillation as shown in Fig. 3.2. A �t to the data yields a resonant Rabi frequency of
Ωrf,0 = 2π · 6.6 kHz and a modulation frequency of ωQ/2π = 71 Hz.

As argued before, the second-order Zeeman shi� can be described in the Hamiltonian
by the operator Q̂0. Since a rotation around Q0 reduces the transversal spin length, we
expect that this modulates the contrast of the Rabi oscillation, which is equivalent to a
modulation of the total spin length. For this experiment we have set the external magnetic
�eld to 1.44 G which results in an second-order Zeeman shi� of qB = 150 Hz. �is di�ers
by a about factor of two from the observed modulation frequency. However, as explained
in 2.1.5, the reduction of the spin length depends on the mean value of Sz . For |Sz | ≈ 0
the spin length is dynamically modulated according to ∝ cos(2πqB · t), but for |Sz | ≈ 1
the e�ect of the second-order Zeeman shi� is equivalent to an additional rotation of the
spin around Sz while the spin length stays constant. Since the Sz projection of the state
constantly changes during the Rabi evolution, we would intuitively expect the modulation
to be slower than the second-order Zeeman shi�. Simulating the Rabi oscillations with
the experimental parameters con�rms that the modulation frequency is indeed a factor
of two lower than the second-order Zeeman shi�.

3.5. Microwave control

To drive transitions between the two hyper�ne manifolds we use microwave (mw) �elds.
Coupling two magnetic substates corresponds to a two-level system which is described
by spin-1/2 operators. For the theoretical description we de�ne the operators in second
quantization

Ĉm1,m2
x =

1
2â
†
1,m1

â2,m2
+ h.c. Ĉm1,m2

y =
1
2iâ
†
1,m1

â2,m2
+ h.c. (3.8)

where â(†)F ,mF
is the annihilation (creation) operator in the state (F ,mF) where mF is the

magnetic substate in the respective hyper�ne manifold. Because of the selection rules for
dipole transitions only couplings with ∆mF =m1 −m2 = {0,±1} are allowed. Since the
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linear Zeeman shi� is nearly the same in both manifolds but with an opposite sign, the
resonance frequencies for couplings with ∆mF = ±1 are typically separated by ≈ 1 kHz
while also the Rabi frequency is on the order of a few kHz. �erefore, if we set the mw
frequency to resonantly couple for example the states (1,−1) ↔ (2, 0)we simultaneously
couple o�-resonantly the states (1, 0) ↔ (2,−1). �e only exception are transitions to
the states (2,±2) and transitions with ∆mF = 0.

We use two di�erent commercial mw generators (HP 8673D and HP 83620A). �e �rst
mw generator is always set to a �xed frequency of ≈ 6.8 GHz which we feed into an
I/Q mixer. Into the other input port we feed an rf signal generated by a direct digital
synthesizer (DDS). Changing the rf frequency allows us to tune the frequency at the
output of the mixer in about 50µs. Additionally, by controlling the phase of the rf source
we can tune the phase of the mw output signal. Due to the fast switching times we mainly
use this mw source for state preparation.

�e second mw generator is directly connected via an ampli�er to the mw coil without
I/Q mixer. �e advantage of this generator is that we use its internal control circuit
to actively stabilize the mw power directly before the mw coil. For that we inserted a
directional coupler a�er the mw ampli�er to feed part of the signal back into the internal
control loop. We mainly use this generator when we need a highly stable mw power,
for example, to induce spin dynamics, which will be discussed in detail in the following
chapter.

Preparation of a coherent polar state

As the coherent polar state, where all atoms occupy the state (1, 0), is the starting point for
many experiments presented here, we explicitly describe here the preparation sequence
that is used in the experiment. A�er the condensation all atoms occupy the state (1,−1).
We then employ two successive mw π -pulses coupling the states (1,−1) ↔ (2, 0) and
(2, 0) ↔ (1, 0) to transfer the population into the state (1, 0). A�erwards we apply a
strong magnetic �eld gradient along the z-direction to remove any residual atoms in
the states (1,±1) from the trap. A�er the Stern-Gerlach pulse we wait for 100 ms to let
the magnetic �eld stabilize before proceeding with the experimental sequence. For the
polar state the states (1,±1) are not populated, this means that the Larmor phase is also
unde�ned and the �rst rf- rotation serves as a phase reference.

3.6. Magnetic field control sequence

Even though the shot-to-shot �uctuations of the magnetic �eld is on the order of only
50µG, the value can dri� over time. �is is mainly due to temperature dri�s in the elec-
tronics. To compensate for these dri�s we perform approximately every hour a Ramsey-
type control sequence. For this we employ a mw π/2-pulse to generate an equal superpo-
sition of the states (1,−1) and (2, 0). We deliberately detune this pulse by δR = 2π ·400 Hz
from resonance. As this detuning is small compared to the Rabi frequency of 2π · 3.3 kHz,
the e�ect on the population transfer is negligible. It will, however, lead to a dynamically
evolving phase shi� between the state and mw pulse, which depends on the Ramsey time
tR. In the spin-1/2 sphere, this pictorially means that the state which is initially perpen-
dicular to the rotation axis will rotate around the equator with the frequency given by
the detuning. Depending on the angle between the state and the rotation axis, a second
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Figure 3.3.: Magnetic �eld control measurement: To stabilize the magnetic �eld we
employ a Ramsey type sequence between the states (1,−1) and (2, 0) which
we deliberately detune from resonance by 400 Hz. Measuring the imbalance
(N2,0 − N1,−1)/N a�er a Ramsey time of tR = 625µs yields the shi� of the
magnetic �eld from the set value B0.

Figure 3.4.: Compensation of the magnetic �eld gradient: a) Atomic signal in F = 2
(upper) and F = 1 (lower) without gradient compensation. b) Atomic signal
a�er compensation.

π/2 rotation will lead to di�erent population imbalances, i.e.

(N2,0 − N1,−1)/N = cos(δR · tR) (3.9)

as shown in Fig. 3.3). In our case, a�er a Ramsey time of tR = 625µs the state will
be aligned with the rotation axis. �erefore, the �nal spin rotation will not change the
population imbalance of 0.

Experimentally, we use exactly this signal a�er a Ramsey time of 625µs to stabilize
our magnetic �eld. If the magnetic �eld shi�s to a lower value, it e�ectively decreases
the detuning and we will �nd a positive imbalance. Equivalently, if the magnetic �eld has
shi�ed to higher values, it will e�ectively increase the detuning which leads to a negative
imbalance in the �nal signal. With this method we can extract the sign as well as the
strength of the �eld dri�. Experimentally, we average over 5 consecutive measurements
and feed the extracted measured magnetic �eld dri� forward to the setpoint of the mag-
netic �eld stabilization. In this way, we can correct dri�s on the order of ±600µG before
the sign of the dri� cannot be determined unambiguously anymore. For details on the
magnetic �eld stabilization see [79].
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Magnetic field gradient
�e magnetic bias �eld is not perfectly homogeneous over the spatial extension of the WG
trap but features a small linear gradient, i.e. ∂Bz/∂y , 0. �e major part of this gradient
is compensated by positioning permanent refrigerator magnets around the glass cell.
To eliminate the residual gradient we employ the following sequence. We prepare an
elongated atomic cloud in the waveguide con�guration and use a mw π/2-pulse to create
an equal superposition of the states (1,−1) and (2,−2). �e di�erential magnetic moment
between these states corresponds to about 3 · |д1,1 | which renders this con�guration very
sensitive to magnetic �eld changes. We again employ a Ramsey-type measurement as
before with an interrogation time of tR = 100 ms. In this measurement, however, we are
not interested in the total phase shi�, which exceeds the stability of our magnetic �eld,
but in the relative phase di�erence in space. �e e�ect of the magnetic �eld gradient
is that at each point along the waveguide direction the spin precesses with a slightly
di�erent frequency compared to the mw �eld. A�er the second readout pulse one �nds
a spatially modulated imbalance between the two states given by

n2,−2(y) − n1,−1(y)

n(y)
= cos(2π y

ly
+ ϕ) (3.10)

where nF ,mF are the spatially resolved atom numbers in the state (F ,mF) and ϕ is an
arbitrary o�set phase; the signal for an uncompensated magnetic �eld gradient is shown
in Fig. 3.4a). Out of the spatial length scale ly the magnetic �eld gradient is calculated to
be ����∂Bz∂y ���� ≈ 1

3|д1,1 |tRly
. (3.11)

By applying a constant current through the rf-coil (1) we compensate the magnetic �eld
gradient as shown in Fig. 3.4b) up to a few nG/µm. Because the magnetic �eld that is
generated by the rf-coil in y− direction is much smaller than the applied o�set �eld
in z-direction, the overall direction and value of the bias �eld remains approximately
unchanged. �is method is mainly limited by the interaction of the atoms which also gives
a spatial detuning in the harmonic potential due to density dependent interaction shi�s.
However, the compensation we achieve is su�cient such that we detect no signi�cant
e�ect of a residual magnetic �eld gradient in the experiments described in the following.
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4. Interactions and spin-mixing

Experimentally, we use the process of spin-mixing to generate nonclassical states. Start-
ing in the state (1, 0), this mechanism coherently produces highly entangled particle
pairs in the states (1,±1), which, in the following, we refer to as side modes. �is pro-
cess is analogous to spontaneous parametric down-conversion in quantum optics [87],
where it is used to generate highly entangled photon pairs [88, 89] employed in quantum
information protocols such as quantum teleportation [90] and Bell tests [55].

Here, we will review how spin-mixing arises in a spinor BEC from the contact interac-
tions between the atoms. We restrict the discussion to the F = 1 manifold; more details
and the extension to F = 2 can be found in [26, 91]. For the spin-mixing experiments
detailed here, the atoms are prepared in the crossed dipole trap to increase the interaction
strength via a higher atomic density. While the spatial degree of freedom in this trapping
con�guration is largely frozen out, we can still use spin-mixing to excite distinct spatial
modes of an e�ective external potential which will be introduced in the following. To
include the spatial degree of freedom in our theoretical description we de�ne the operator

Ψ̂(†)m (r ) = ψm(r )â
(†)
m (4.1)

which annihilates (generates) a particle in the magnetic substatem with the spatial wave-
functionψm(r ). For the beginning of the discussion, we consider a single mode approxi-
mation meaning that all magnetic substates occupy the same condensate wavefunction
ψc(r ) which can be found as the minimum of the Gross-Pitaevski equation [92].

4.1. Interaction Hamiltonian

Due to the diluteness of the BEC it is su�cient to take only binary collisions into account
since three or more-body collisions are highly unlikely. We also neglect the e�ect of long
range dipole-dipole interactions and start by considering contact interactions typically
modeled by a δ pseudopotential [93]. �e collisions are assumed to be spherically sym-
metric such that the total angular momentum is conserved L. For ultracold, identical
bosons, only head-on collisions with a total angular momentum ofL = 0 (s-wave regime)
are allowed, as the energy is too low to overcome the centrifugal barrier for higher angu-
lar momenta in the center of mass frame. �e two identical spin-1 particles involved in
the collision form a total spin, which due to bosonic exchange symmetry can for L = 0
only take even values of F = {0, 2}. �is gives two collisional channels where each is
characterized by an individual s-wave sca�ering length. �e interaction Hamiltonian in
units of Hz is then given as [26, 91]

ĤInt/h =
1
2

2~
M
(a0P̂0 + a2P̂2), (4.2)
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where M is the atomic mass and P̂F =
∑F
M=−F

|F ,M〉 〈F ,M| is the projector on the
state with total spin F . �e sca�ering lengths for the two channels are [94]

a0 = 101.8 ± 0.2aB

a2 = 100.4 ± 0.1aB
(4.3)

with the Bohr radius aB = 5.3 · 10−11 m.

Using the completeness relation and some spin algebra, i.e.

(i) 1a ⊗ 1b = P̂0 + P̂2

(ii) ®̂Sa · ®̂Sb =
1
2
∑
F

[
( ®̂Sa + ®̂Sb)

2 − ®̂S2
a −
®̂S2

b

]
P̂F

=
1
2
∑
F

[F (F + 1) − 2F (F + 1)] P̂F

= −2P̂0 + P̂2,

(4.4)

where a and b label the two interacting particles. Solving these two relations for P̂0 and
P̂2 and inserting the expression in Eq. (4.2) yields in second-quantization the interaction
Hamiltonian

ĤInt/h =
c̃0
2

:N̂ 2: +c̃1
2

: ®̂S · ®̂S : . (4.5)

Here, : : denotes normal ordering, i.e. that all annihilation operators are placed to the right
of the creation operators. �e spin independent and spin dependent coupling constants,
c̃0 and c̃1, are given via

c0 =
2~
M

a0 + 2a2
3

c1 =
2~
M

a2 − a0
3 ,

(4.6)

with c̃j = χcj , where χ =
∫
drψ 2

0ψ
∗
+1ψ
∗
−1 quanti�es the mode overlap. In the single mode

approximation where all states occupy the same spatial mode, this is χ =
∫
dr |ψC(r )|4.

For the F = 1 manifold of 87Rb the coupling constant c1 is negative. �is means that
the energy functional Eq. (4.5) is minimized if the spin of all atoms is aligned. �erefore,
the interaction in this manifold is called ferromagnetic.

4.2. Spin-mixing

While the spin independent part of the Hamiltonian leads to some overall energy shi�
which is essential to �nd the spatial ground state of the condensate, the spin dependent
part causes internal dynamics between the magnetic substates. To see this one inserts the
de�nition of the spin operators in second quantization and expands the spin-dependent
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CHAPTER 4. INTERACTIONS AND SPIN-MIXING

Hamiltonian in terms of the ladder operators

ĤSpin/h =
c̃1
2

:(Ŝx Ŝx + ŜyŜy + ŜzŜz):

= c̃1N̂

+ c̃1(N̂0 −
1
2 )(N̂+1 + N̂−1)

+
c̃1
2

:(N̂+1 − N̂−1)
2:

+ c̃1 (â
†
0â
†
0â+1â−1 + â

†
+1â
†
−1â0â0).

(4.7)

�e �rst term gives some overall energy shi� and can be removed as a total energy o�set.
�e second term gives a relative energy shi� between the state (1, 0) and the side modes
(1,±1). �e second line is a shi� caused by a �nite magnetization of the state which is
usually not relevant for the experiments discussed in the following. �e last term is the
so-called spin-mixing Hamiltonian. It coherently transforms two atoms in the state (1, 0)
into atom pairs in the states (1,±1) and vice versa [95].

To describe the initial dynamics one o�en employs a so-called undepleted pump ap-
proximation which is valid as long as the state (1, 0) is highly populated and consequently
N ≈ N0 � N +, where N + = N+1 + N−1 is total population in the side modes (1,±1).
Within this limit the operator â(†)0 ≈

√
N e(−)iϕ0 is approximated by a complex number.

If the states (1,±1) are initially unoccupied, the time evolution can then be calculated
analytically and one �nds on resonance

|ψ 〉 (t) =
1

cosh(κt)
∑
N+

[
−ie−2iϕ0 tanh(κt)

]N+ ����N +2 ,N − N +, N +2 〉
(4.8)

with the coupling strength κ = 2π ·Nc̃1. Here, we expanded the state in the Fock basis as
introduced in Sec. 2.2. Since spin-mixing conserves the total magnetization, the dimension
of the accessible Hilbert is largely reduced and each basis state can be identi�ed by the
side mode population N + = {0, 2, . . . ,N }. �e mean population of the side modes evolves
exponentially as

〈N̂ +〉Q = 2 sinh2(κt)
κt>1
≈

1
2e2κt − 1. (4.9)

�e spin-mixing dynamics generate a highly-entangled two-mode squeezed vacuum
state [96, 24, 12, 9], which has already been shown to provide a useful resource for
quantum enhanced interferometry [97, 98].

Dependence on atom number
�e coupling constant κ = 2π · Nc̃1 suggests that the coupling strength depends linearly
on the total atom number. However, one also has to consider the mode overlap χ . As-
suming the �omas-Fermi approximation, i.e. that the interaction energy dominates the
kinetic energy, the density of the condensate is given by [92]

nTF(r ,y) =
1
c0
[µTF −Vext(r ,y)]

=
1
c1
[µTF −

M

2 (ω
2
⊥r

2 + ω2
‖
y2)]

(4.10)
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Figure 4.1.: Experimental energy scales: a) As illustrated here, the �rst-order Zeeman
shi� is not the relevant energy scale for the spin-mixing process, since the
energy required for generating a particle in the state (1,−1) is gained by
generating one in the state (1,+1). b) One therefore needs to consider the
second-order Zeeman shi� (qB) which detunes the spin-mixing process from
resonance. Using o�-resonant mw coupling between the states (1, 0) ↔ (2, 0)
we can tune this energy spli�ing which gives us control over the spin dynam-
ics.

where µTF is the chemical potential. For µTF < Vext(r ,y), the density vanishes, which
means that, within this approximation, the condensate �lls the external potential up to
the chemical potential which is given by

µTF =
~ωho

2

(
15N
aho

a0 + 2a2
3

)2/5
(4.11)

with ωho =
3
√
ω2
⊥ · ω‖ and the corresponding harmonic oscillator length aho =

√
~/Mωho.

In the single-mode approximation we can then calculate the mode overlap via

χ =

∫
dr |ψ c(r )|4 = 2π

∫
r dr dy |nTF(r ,y)/N |

2. (4.12)

�e limits of this integration are given by the �omas-Fermi radii which are found by
se�ing

M

2 (ω
2
⊥r

2 + ω2
‖
y2)

!
= µTF. (4.13)

With this, we �nd for the mode overlap

χ ∝ N −3/5 (4.14)

and thus, we get for the atom number dependence on the interaction strength

κ ∝ N χ ∝ N 2/5. (4.15)

4.3. Experimental control

�e spin-mixing process conserves the magnetization of the state and therefore the
energy under the �rst-order Zeeman shi� stays constant (see Fig. 4.1a)). Mathematically,
this means that the energy contribution of the �rst-order Zeeman shi� can be removed
from the dynamics using Lagrange multipliers [99]. �e relevant detuning for this process
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CHAPTER 4. INTERACTIONS AND SPIN-MIXING

is given by the second-order Zeeman which introduces an energy o�set between the
atoms in the state (1, 0) and (1,±1). Depending on the bias �eld, this detuning typically
corresponds to values between qB = 50 and 150 Hz while the coupling strength of the
spin-mixing process is on the order of 2 Hz. �erefore, the spin-mixing process is far
o�-resonant.

To control this process we employ so-called mw dressing to shi� the energy of the
state (1, 0) with respect to (1,±1) [100]. For this we o�-resonantly couple the states
(1, 0) ↔ (2, 0), which causes an energy shi� of the state (1, 0) due to the ac-Stark shi�.
�e resonant Rabi frequency is typically on the order of Ωmw ≈ 2π · 9.5 kHz while the
detuning is about δmw ≈ 2π · 150 kHz. �is means that the probability to transfer atoms
to the state (2, 0) during mw dressing is η = Ω2

mw/(Ω
2
mw + δ

2
mw) < 0.5%.

With this dressing the e�ective detuning of the spin-mixing process is

qe� = qB + qmw with qmw =
1

2π
Ω2

mw
4δmw

. (4.16)

�us, we can control the spin-mixing dynamics by changing the detuning of the mw �eld.
Since the coupling strength of the spin-mixing is on the order of a few Hz, this requires
that the e�ective detuning qe� has to be precisely controlled via the mw dressing. �is
requires a high stability of the Rabi frequency, i.e. of the mw power. Consequently, we
use we use the power-stabilized mw generator to induce the mw dressing. With this
generator the relative shot-to-shot �uctuations on the mw power are less than 0.3%.

For a magnetic �eld of ≈ 1 G the �rst-order Zeeman e�ect leads to an energy spli�ing
between the magnetic substates of ≈ 700 kHz such that the Stark shi� due to o�-resonant
coupling to other magnetic substates is usually neglected, even though it also contributes
a few Hz to the e�ective detuning. Experimentally, we use spectroscopy measurements
to determine the precise value of the mw detuning at which the spin-mixing process is
in resonance.

4.4. Mean-field dynamics on the spin-nematic sphere
�e spin-nematic sphere introduced above o�ers a convenient way to visualize the spin
dynamics [24]. To see this we take a closer look at the Hamiltonian describing the internal
dynamics. As argued before, the e�ective energy o�set qe� between the states (1, 0) and
(1,±1) is described by the operator Q̂0. �us, neglecting the �rst-order Zeeman shi� the
Hamiltonian is given by

Ĥ/h = −
qe�
2 Q̂0 +

c̃1
2

:
(
Ŝ2
x + Ŝ

2
y + Ŝ

2
z

)
: . (4.17)

We restrict the discussion to the surface of the spin-nematic sphere spanned by the
operators {Q̂yz, Ŝx , Q̂0} but the treatment is analogous in all spin-nematic subspaces as
the spin-mixing process is independent of the Larmor phase. For now, we neglect the
quantum �uctuations and just concentrate on the mean-�eld dynamics. �e e�ect of
this Hamiltonian is illustrated in Fig. 4.2. �e �rst term describes a rotation around
the Q0 axis. �e term Ŝ2

x is a shearing and can be thought of as a rotation around the
Sx -axis which depends on the value of Sx and therefore changes sign as soon as the
state crosses the Sx = 0 line. For a state on the surface of this spin-nematic sphere the
mean magnetization vanishes, i.e. Sz = 0, and additionally Sy = 0. �erefore, the e�ect

41
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Figure 4.2.: Mean-�eld trajectories on the spin-nematic sphere: �e two di�erent
contribution to the total Hamiltonian lead to a rotation (le�) and a shearing
(middle) on the spin-nematic sphere. On the right the combined trajectories
for qe� = −Nc̃1 are shown. �e black line is usually referred to as separatrix
which separates the self-trapping region (red lines) from the running phase
mode (blue lines).

of the other two shearing terms can be neglected. Because spin-mixing conserves the
magnetization and the Larmor phase, it is ensured that the state stays on the surface of
the sphere during the dynamics.

�e mean-�eld energy on this spin-nematic subspace is given by

EMF = −h
qe�
2 Q0 + h

c̃1
2 S2

x . (4.18)

For qe� � c̃1 the �rst term dominates and we �nd stable points at the poles of the sphere,
corresponding to polar and transverse polar states. We now study the stability of the polar
state under a change of the parameter qe�. For that we calculate the slope and curvature
of the energy in the direction of Sx . Because the phase space is spherical the value of Q0

is not an independent parameter but is connected to Sx via Q0 =
√
N 2 − S2

x −Q
2
yz for the

northern hemisphere. With this we �nd for the slope and curvature at the pole

∂EMF
∂Sx

����
Sx=Qyz=0

= 0

∂2EMF

∂S2
x

����
Sx=Qyz=0

= h(
qe�
N
+ 2c̃1).

(4.19)

Without mw dressing qe� is positive and much larger than 2Nc̃1. �erefore, the curvature
is positive and the polar state minimizes the mean-�eld energy Eq. (4.18). In the F = 1
manifold c̃1 < 0 and, thus, the curvature changes its sign at qcr = −2Nc̃1. Consequently,
for 0 ≤ qe� < qcr the polar state becomes unstable and the spin-mixing process starts
to macroscopically populate the states (1,±1). �is corresponds to a so-called Pitchfork
bifurcation and two new stable points arise which are found by se�ing

∂EMF
∂Sx

����
Qyz=0

!
= 0 ⇒ Sx ,1 = 0, Sx ,2/3 = ±

1
2c̃1

√
4N 2c̃2

1 − q
2
e�. (4.20)
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�is situation is illustrated in Fig. 4.2. In this regime, there are two di�erent types of
trajectories, running phase (blue) and closed oscillations (red), which are separated by
a so-called separatrix (black line). For qe� < 0, the two stable points are located on the
southern hemisphere of the spin-nematic phase-space. In this situation, the transverse
polar state becomes unstable while the polar state is again stable.

4.5. Truncated Wigner simulation

�e classical trajectories introduced before can be used to study the quantum evolution
of a given initial state via a so-called truncated Wigner simulation [101]. �e idea is to
sample the initial Wigner distribution propagate each point via these classical trajectories.
�is method is naturally restricted to initial states with positive Wigner functions such
as coherent states. �e trajectories then deform the initial distribution analogously to
a Fokker-Planck equation in classical statistics. It turns out that especially for the short
times, where the distribution is still Gaussian, this method captures very well the quantum
evolution [102, 103]. However, as we follow the classical trajectories the �nal result will at
one point not be able to fully capture the quantum dynamics. We know that spin-mixing
produces highly entangled non-classical two-mode squeezed states and that the Wigner
function of such non-classical states can become negative. �is, however, is not captured
in the simulation and the probability distribution always stays positive as the di�erent
trajectories do not interfere as in contrast to a full quantum calculation. �is is because
higher order terms for the evolution have been truncated. However, also in this regime
the simulation provides some intuition about the dynamics of the quantum state.

Numerically, truncated Wigner simulations are typically much easier to implement
than a full quantum calculation. To calculate the dynamics of a coherent polar state one
samples the Wigner distribution of the state via

ψS =
√
N

©­«
ζ+1
ζ0
ζ−1

ª®¬ = ©­«
X1√
N
X2

ª®¬ , (4.21)

where Xi (i = {1, 2}) are complex random numbers with mean 〈Xi〉 = 0 and variance
∆2Xi = 1/2. �ese �uctuation are sometimes referred to as the quantum one-half which
initiate the spin-mixing dynamics. As a consistency check, we can use these states to
calculate the variance of the spin Sx = ψ †S ŜxψS , which yields ∆2Sx = N as expected
for a coherent polar state. To get the classical equation of motion for each of the three
components we use the quantum mechanical time evolution of the mode operators, i.e.
dâ(†)m /dt = i[Ĥ , â

(†)
m ]/~ and insert the classical approximation

â(†)+1 →
√
Nζ (∗)+1

â(†)0 →
√
Nζ (∗)0

â(†)
−1 →

√
Nζ (∗)
−1 ,

(4.22)
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where ζm is a complex number with |ζm |2 = Nm/N . For these numbers one then gets the
following classical equations of motion

dζ+1
dt
= −i2πNc̃1

[
(|ζ+1 |

2 + |ζ0 |
2 − |ζ−1 |

2)ζ+1 + ζ
2
0 ζ
∗
−1

]
dζ0
dt
= i2πqe� ζ0 − i2πNc̃1

[
(|ζ+1 |

2 + |ζ−1 |
2)ζ0 + 2ζ+1ζ−1ζ

∗
0
]

dζ−1
dt
= −i2πNc̃1

[
(−|ζ+1 |

2 + |ζ0 |
2 + |ζ−1 |

2)ζ−1 + ζ
2
0 ζ
∗
+1

]
.

(4.23)

�is set of coupled di�erential equations can be solved numerically. �e results for q =
−Nc̃1 = 2 Hz and N = 100 are shown in Fig. 4.3.

4.5.1. Short-time dynamics and spin-nematic squeezing
Starting from the coherent polar state the initial distribution spreads along one axis of
the separatrix while the �uctuations are reduced on the orthogonal axis. �is results
in a so-called spin-nematic squeezed state [24], which has still a Gaussian distribution
along each axis. Such squeezed states are already a useful resource for quantum enhanced
metrology [9] and feature entanglement between the individual particles [10].

4.5.2. Long time dynamics and non-Gaussian states
For longer evolution times (t = 180 ms) the distribution becomes non-Gaussian as the
state wraps around the spin-nematic sphere. As the state enters this depleted pump
regime some points also leave the surface of the {Q̂yz, Ŝx , Q̂0} sphere and deviate from
the classical trajectory. �is is because the Larmor phase is initially unde�ned, since the
polar state has no population in the states (1,±1). �e spin-mixing process then assigns
a random Larmor phase to the state as soon as these modes are populated. Note that in
the truncated Wigner simulation the random Larmor phase is produced by the sampling
of the initial state.

�us, in each realization we plo�ed just one projection of the transversal spin S⊥(ϕL)
on the spin-nematic sphere and the same holds for the transversal quadrupole moment
Q⊥(ϕL). In the simulation, we can remove the e�ect of the Larmor phase by directly
evaluating the transversal spin length and the transversal quadrupole moment. With
this we �nd that the state indeed follows the classical trajectory as indicated by the
separatrix [104] (see Fig. 4.3).

Even though the marginal distributions of this non-Gaussian state are larger than
the one of the squeezed and even of the initial coherent state, these states still provide
metrological gain as they still feature strong entanglement in a particle basis as quanti�ed
by the quantum Fisher information [105]. �e Wigner distribution of this non-Gaussian
is expected to show some negativities due to interference e�ects. �is can however not
be captured by our simulation method which clearly shows the limitations of this scheme.
Yet, it still provides an intuitive picture of the spin-mixing dynamics.

4.6. E�ective potential
So far we have treated the spin-mixing process under the assumption that all magnetic
substates have the same spatial wavefunction. �us, we have so far neglected the spatial
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Figure 4.3.: Truncated Wigner simulation: In the simulation we employ N = 100
atoms and set the parameters qe� = −2Nc̃1 = 2 Hz. On the upper plot the
sampled distribution of the initial coherent state is shown, where we employ
10,000 samples. For short evolution times (t = 60 ms) the initial �uctuations
are redistributed among two orthogonal directions forming a squeezed state.
For longer times (t = 180 ms) the state becomes non-Gaussian and is no
longer fully represented on the surface of the spin-nematic sphere. �e reason
for this is that starting from the polar state the Larmor phase is initially
unde�ned. �e spin-mixing process then assigns a random phase to the state
as soon as the modes are populated while we only extract one projection
of the resulting transversal spin. By evaluating the transversal spin S⊥ and
quadrupole moment Q⊥ we remove the e�ect of the Larmor phase and each
initial point follows the classical trajectory.
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degree of freedom. In the crossed dipole trap, however, it is also possible to populate
excited spatial modes using spin-mixing. One would naively expect that the energy spac-
ing of these modes is given by the external trapping potential, i.e. ∆E/~ = ω‖ ≈ 50 Hz.
However, because of the interaction between the atoms, the excitation will happen on
top of the condensate mode. �is results in a much lower energy spacing [106, 107].

Few-particle excitations on top of a large condensate

Taking into account the spatial component of the operators, yields for the single particle
Hamiltonian in second quantization

Ĥ0 =

∫
dr

∑
mF

Ψ̂†mF

(
−
~2∇2

2M +Vext(r ) − hqe�m
2
F

)
Ψ̂mF, (4.24)

where Vext is the external trapping potential. As argued before, only the second-order
Zeeman shi� is included here. Analogously, we obtain for the interaction Hamiltonian
(Eq. (4.5))

ĤInt = c0 :[Ψ̂†(r )Ψ̂(r )]2: +c1 :Ψ̂†(r ) ®̂SΨ̂(r )Ψ̂†(r ) ®̂SΨ̂(r ):, (4.25)

where Ŝi are the single-particle spin-operators. To derive the e�ective potential for exci-
tations in the state (1,±1) one considers the �uctuation around a highly populated polar
state [108]. One can then use a Bogoliubov ansatz for the spinor �eld operators

Ψ̂(r ) =
©­«
Ψ̂+1
Ψ̂0
Ψ̂−1

ª®¬ ≈ ©­«
0√
n0(r )
0

ª®¬ + ©­«
δ Ψ̂+1
δ Ψ̂0
δ Ψ̂−1

ª®¬ . (4.26)

Inserting this Bogoliubov approximation and keeping terms only up to second order in
the �uctuations δψ (†)mF yields for the complete Hamiltonian

Ĥ=Ĥ0 + ĤInt

≈

∫
dr

∑
mF

δ Ψ̂†mF(r )

(
−~2∇2

2M +Ve�(r ) − qe�mF

)
δ Ψ̂mF(r )

+ n0(r )c1
(
δ Ψ̂†+1(r )δ Ψ̂

†
−1(r ) + δ Ψ̂+1(r )δ Ψ̂−1(r )

)
.

(4.27)

�e last term describes again spin-mixing and the e�ective external potential is given by

Ve�(r ) = Vext(r ) + (c0 + c1)n0(r ). (4.28)

Inserting the density pro�le in the �omas-Fermi approximation (see Eq. (4.10)) yields

Ve�(r ) =

{
c1
c0
µ − c1

c0
Vext(r ) for |r | ≤ rTF

Vext(r ) else
(4.29)

where rTF is the �omas-Fermi radius. To derive this e�ective potential we shi�ed the
overall energy by the chemical potential µ. Inserting the expression for the external
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Figure 4.4.: E�ective potential for spin-mixing: In the �omas-Fermi regime, any
single-particle excitation will be on top of an external potential that is �lled
up by the condensate. �e gray box shows a example of the resulting e�ective
potential and the energy eigenstates calculated for 40,000 atoms. �e inter-
actions lead to a harmonic + box like potential which provides additional
resonances for the spin-mixing process with a energy spli�ing on the order
of a few Hz.

potential yields explicitly in the longitudinal direction

Ve�,‖(x) =


c1
c0
µ + 1

2M
(√

c1
c0
ω‖

)2
x2 for |x | ≤ rTF,‖

1
2ω

2
‖
x2 for |x | > rTF,‖,

(4.30)

where the �omas-Fermi radius is given by rTF,‖ =
√

2µ/Mω2
‖
. For 40,000 atoms and a

longitudinal trapping frequency of ω‖ = 2π · 50 Hz, we calculate a value of rTF,‖ ≈ 11µm.
An intuitive picture for the e�ective potential is shown in Fig. 4.4. �e atoms in the

condensate �ll the external trapping up to the chemical potential. Any small excitation
happens on top of this “sea of atoms”. �erefore, the particles experience, in �rst approx-
imation, a box potential that is slightly modi�ed due to the spin-dependent interaction.
�e modi�ed potential inside the �omas-Fermi radius is still harmonic with an e�ective
trap frequency of ωe� =

√
c1/c0ω‖ ≈ 2π · 3.5 Hz. For our experimental parameters, the

chemical potential is calculated to be µ ≈ h · 2.2 kHz which results in a depth of the
harmonic potential given by c1/c0 µ ≈ h · 10 Hz. �us, only the two energetically lowest
spatial modes are still in a harmonic potential while higher excitations approximately
experience a box-like potential.

Using mw dressing we can tune the e�ective detuning qe� such that the spin-mixing
process is in resonance with these excited spatial modes of the e�ective potential. �e
coupling to these spatial modes is modi�ed by the mode overlap

χk =

∫
drψ 2

c (r )ψ
2
k (r ), (4.31)

where ψc is the wavefunction of the condensate given by the �omas-Fermi approxi-
mation and ψk is the wavefunction of the states (1,±1) in the kth excited mode of the
e�ective potential.

It is interesting to note that the possibility to excite these spatial modes is a special
property of the spin-mixing process and is a consequence of the fact that it is a two-
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Figure 4.5.: Spectroscopy of the spin-mixing resonance for di�erent evolution
times: In the upper plots, the mean value of the normalized side mode pop-
ulations 〈N +/N 〉 = 〈(N+1 + N−1)/N 〉 is plo�ed as a function of the e�ective
detuning qe�. We observe the excitation of three di�erent spatial modes in
the longitudinal trapping potential (I – III), where the corresponding atomic
densities are shown below. Additionally, we �nd a resonance corresponding
to an excited spatial mode in the transversal potential as shown in the le�
plot at qe� ≈ −11 Hz (ii).

particle process. In contrast, rf-rotations as a single-particle process cannot excite these
modes as the Franck-Condon factor, i.e. the wavefunction overlap of two di�erent spatial
modes vanishes

∫
dxψ ∗i (x)ψj(x) = δij while in contrast χk does not vanish. To address

these modes with rf-rotation would require state dependent potentials [109].

4.7. Spectroscopy of spatial modes

To explore this e�ective potential we experimentally start with N = 40, 000 atoms in the
state (1, 0), with the magnetic �eld set to 0.884 G. Using mw dressing we tune the e�ective
detuning qe� and measure a�er some evolution time the mean population 〈N +〉 = 〈N+1+
N−1〉 of the side modes normalized to the total atom number (see Fig. 4.5). A�er 100 ms
of evolution we observe two distinct resonances with an energy di�erence of ≈ h · 18 Hz.
Via the measured density pro�le we identify the resonance at qe� ≈ 7 Hz (I) with the
ground state mode (referred to as ground mode) of the longitudinal e�ective potential.
�e second resonance is located around qe� ≈ −11 Hz (ii) which we identify with the
�rst excited mode of the e�ective transversal potential.

A�er longer evolution times the resonance peak near the ground mode gets broader
and we observe the population of spatially excited modes in the longitudinal trapping
potential (II, III) which are expected to have an energy spacing of ≈ 3 Hz. Since this is on
the same order as the spin-mixing strength these resonance peaks overlap. Due to the
smaller mode overlap of the higher excited modes with the condensate mode one expects
a smaller spin-mixing strength which is consistent with the observation that these modes
are only visible a�er longer evolution times.
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Spectroscopy shi�

�e interaction strength in this experimental se�ing is about |Nc̃1 | ≈ 5 Hz. From a mean-
�eld description one would expect that the resonance of the ground mode would be in
the range of qe� = 0 Hz – 10 Hz. Experimentally, however, we �nd that the resonance
starts already at qe� = 14 Hz and therefore the spectroscopy signal is shi�ed by about
4 Hz with respect to the theoretical value even when we consider all possible energy
shi�s due o�-resonant mw coupling between the di�erent magnetic substates.

One contribution to this shi� is presented in the following. �e start of the resonance
atqe� = 10 Hz is de�ned via the homogeneous theory, where we did not take into account
the e�ective potential. Since the ground mode is still in the harmonic part of this potential,
the energy shi� with respect to the chemical potential is given by

c1
c0

µ

h
+

√
c1
c0

ω‖

2π ≈ −7.8 Hz (4.32)

where we set, in the experiment, the longitudinal trap frequency to ω‖ = 2π · 38 Hz.
�is has to be compared to the mean-�eld shi� from the homogeneous theory, which is
already included in the de�nition of the critical value of qc = 10 Hz. In the undepleted
pump approximation, this shi� amounts to Nc̃1 = −5 Hz (see 2nd term in Eq. (4.7)). �us,
we expect an additional shi� by the e�ective potential of −2.8 Hz which accounts for
the major part of the shi� we observe in the spectroscopy. �e residual part might be
a�ributed to uncertainties in the measured dressing Rabi frequency. In the following,
we just consider the shi� from the o�-resonant coupling of (1, 0) ↔ (2, 0) to calculate
qe�, since the exact value is not essential for the experiments as we will always use a
spectroscopy to calibrate the value of qe� according to the speci�c spatial mode we want
to address.

4.8. Time evolution of spatial modes

We now take a closer look at the time dynamics of the di�erent spatial modes, which are
shown in Fig. 4.6. Again, we initially prepare 40,000 atoms in the state (1, 0) and tune the
spin-mixing process into resonance in the regime of the three energetically lowest spatial
modes. For the ground mode we �nd, a�er an initial exponential rise, coherent oscillations
of the side mode population. �is is expected from a single-mode approximation.

For the two excited modes this is not the case anymore. One reason is that the deriva-
tion of the e�ective potential becomes questionable as the side modes are highly occupied.
Additionally, in the mean-�eld picture one expects according to Eq. (4.23) that the energy
of the state (1, 0) is reduced as the states (1,±1) are populated. �is means that even if
one tunes spin-mixing into resonance with an excited spatial mode, the energy shi� due
to the population of the side modes can tune it into resonance with lower spatial modes
if the energy spacing is not large enough. �e original spatial mode is then o�-resonant
and one would not expect to observe coherent dynamics. In this regime, we also exam-
ined the spatial pro�les of the states (1,±1) which do not exhibit a single spatial mode
as shown in Fig. 4.5 bu appear like a mixture of multiple modes. �is indicates that the
dynamics can no longer be described via a single-mode approximation.

To evaluate the coupling to the di�erent spatial modes more quantitatively we analyze
the time evolution of 〈N +〉. Within the undepleted pump approximation, i.e. N0 � N +
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Figure 4.6.: Time evolution of the �rst three spatial modes: We initially prepare
40,000 atoms in the state (1, 0) and tune spin-mixing into resonance with the
spatial modes of the e�ective potential. In this se�ing we extract the mean
population in the side modes as a function of the evolution time. �e insets
depict the corresponding pro�les obtained in a single experimental realiza-
tion of the short time dynamics. While the ground mode exhibits coherent
dynamics, the higher modes are dominated by multimode dynamics. Fi�ing
the initial rise of the mean atom number (red line) we extract the coupling
strength of each mode. Comparison with the theoretical prediction by consid-
ering the mode overlap χk shows that the measured interaction strengths are
signi�cantly lower than expected. �e theoretical values have been normal-
ized to the experimentally extracted coupling strength of the ground mode.
�us, the two values are per de�nition identical for the ground mode.

the time dependence of the side mode population is given by

〈N +〉 = 2 sinh2(κkt) with κk = 2π · N χkc1. (4.33)

�e e�ective coupling strength to the excited states is connected to the wavefunction
overlap χk of the condensate mode ψc and the wavefunctions of the side modes ψ±1,k .
To experimentally extract the coupling strength we �t the short-time dynamics for each
spatial mode, i.e. in a region where 〈N +〉 < 4, 000. We then compare the measured values
with the ones expected from a numerical calculation. For this we determine the eigen-
functions of the e�ective potential and calculate the overlap χk with the wavefunction
of the condensate in the �omas-Fermi approximation. To �x the energy scale, we nor-
malize the theoretical values to the experimentally extracted coupling strength of the
ground mode. For the spatially excited modes, we expect a reduction of the overlap χk ,
which is also observed experimentally. However, the experimental values for the excited
modes are signi�cantly lower than the theoretical ones as shown in Fig. 4.6.
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Figure 4.7.: Spectroscopy for di�erent atom numbers and external trapping fre-
quencies: Spectroscopy signal for the ground and �rst excited (II) mode a�er
1 s (blue) and 2 s (red) of evolution time. Reducing the atom number below
some critical value (middle) as well as increasing the longitudinal con�ne-
ment (right) dramatically reduces the signal of the excited mode which is
then only sporadically populated even a�er 2 s of evolution time.

One reason for this deviation might be that Eq. (4.33) is only true for qe�,k = −N χkc1,
where qe�,k quanti�es the energy di�erence from the state (1, 0) to the k th excited mode
of the states (1,±1). Otherwise the coupling κk is modi�ed according to [26]

κk =
√
qe�,k(qe�,k + 2N χkc1), (4.34)

which is maximal forqe�,k = −N χkc1. For the measurement, we varied qe� with a stepsize
of ≈ 1.5 Hz. �us, we might have missed in the measurement the optimal value of qe�,k
by 0.75 Hz. However, the resulting modi�cation of the coupling strength can also not
account for the measured deviations.

Another possibility is that, due to the large overlap of the resonances, the dynamics of
the respective mode at qe�,k = −N χkc1 is dominated by the dynamics in the energetically
lower mode. Experimentally, we used the spatial pro�les extracted from the short time
dynamics to identify the resonant mode. However, this only works in a regime where
the dynamics of this spatial mode dominate. Depending on the resonance overlap this
regime might not include qe�,k = −N χkc1. For a large overlap we might even detect a
higher spatial mode only at the edge of its resonance region and would therefore extract
a lower coupling strength.

4.9. Single mode addressing

From an experimental point of view it is desirable to control the overlap of the ground and
�rst excited mode such that one can switch between single- and multi-mode dynamics.
Experimentally, this overlap can either be tuned by changing the energy spacing or the
interaction strength.

In the regime where the energy of the lowest spatial modes is dominated by the
harmonic part of the e�ective potential, i.e. for high atom numbers with c1/c0 · µ >
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Figure 4.8.: Spectroscopy with reduced heating: By lowering the power of the waveg-
uide we recover the �rst excited spatial mode for an atom number of 11,000
and ω‖ = 2π · 53.5 Hz. Here, the resonances are clearly separated and can be
individually addressed.

3/2~
√
c1/c0ω‖ , the mode spacing is directly changed by tuning the longitudinal trapping

frequency. �us, increasing the longitudinal trapping frequency within this regime will
reduce the mode overlap. For low particle numbers, the mode spacing is dominated by
the box-like part of the e�ective potential where the energy spacing is controlled by the
width of the box ∆E ∼ 1/d2

box. �e width is given by two times the �omas-Fermi radius

dbox = 2rTF,‖ = 2
√

2µ
Mω2

‖

∝
N 1/5

ω4/5
‖

⇒ ∆E ∝
ω8/5
‖

N 2/5 . (4.35)

�erefore, in both regimes increasing the longitudinal trapping frequency will enhance
the mode spacing. Alternatively, one can reduce the total atom number. �is also increases
the mode spacing in the box-potential as shown in Eq. (4.35). At the same time, a lower
atom number reduces the spin-mixing strength (see Eq. (4.15)) which further decreases
the overlap of the two resonances.

�e le� plot of Fig. 4.7 shows a spectroscopy signal for ≈ 13, 000 atoms where the
resonance of the two modes share a very small overlap. However, reducing the atom
number further largely switches o� spin-mixing into the excited mode. From other ex-
periments we have indications that the heating in our system leads to decoherence of
a state with a transversal spin length [110]. It could be that for low atom numbers the
decoherence rate gets larger than the spin-mixing strength such that populating this
mode is inhibited [111]. Analogously, the increase of the longitudinal con�nement above
some critical value drastically reduces spin-mixing into the excited mode. As before, this
could be explained by decoherence, since a higher power of the XDT is accompanied by
an increase of the heating rate. �us, if the XDT is too strong the decoherence might
become larger than the spin-mixing strength.

Alternatively, we can change the transversal con�nement by lowering the power of
the WG beam. �is lowers the chemical potential which moves the excitations in the
box-potential further apart. On top of that we can tune the power to the edge of the
evaporation ramp. In this se�ing, not only the heating is reduced but the condensate
is constantly cooled which leads to a much longer coherence time. We even �nd no
signi�cant enhancement of the atom loss [110]. �is se�ing corresponds to a transversal
trapping frequency ofω⊥ = 2π ·170 Hz and we recover the resonances of the lowest three
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spatial modes even for low atom numbers of 11, 000 atoms and a longitudinal con�nement
ofω‖ = 2π ·53.5 Hz. �ere, the resonance peaks are well separated and can be individually
addressed (see Fig. 4.8).

4.10. Variance analysis
For detecting spin-mixing we have so far only used the population of the side modes
a�er a given evolution time. For short times, this means detecting very small atom num-
bers which is experimentally challenging. In the following we use that spin-mixing also
changes the second moment of the probability distribution of an initial polar state in the
Sx -Qyz plane as shown in Fig. 4.3. For this we de�ne the observable

F̂ (ϕS) = cos(ϕS − ϕS,0)Ŝx + sin(ϕS − ϕS,0)Q̂yz

=
1
√

2

[
e−i(ϕS−ϕS,0)â†0

(
â+1 + â−1

)
+ h.c.

]
,

(4.36)

where we introduced the o�set spinor phase ϕS,0, such that ϕS = 0 corresponds to the
phase value with minimal �uctuations. Using the analytic solution for the time evolution
in the undepleted pump approximation (Eq. (4.8)) we get for the variance of F̂ (ϕS) at
qe� = −Nc̃1

∆2F (ϕS) = 〈F̂
2(ϕS)〉Q = 〈N 〉[cosh(2κt) − sinh(2κt) cos(2ϕS)], (4.37)

where we used 〈F̂ (ϕS)〉Q = 0. For t = 0 we recover the �uctuations of the coherent polar
state of N . A�er some evolution time the �uctuations of the initial state are redistributed
which results in a spin-nematic squeezed state. For the spinor phases ϕS,min = 0 and
ϕS,max = π/2 we �nd the reduced and enhanced �uctuations of

∆2F (0)/〈N 〉 = e−2κt

∆2F (π/2)/〈N 〉 = e2κt (4.38)

compared to a coherent polar state. By combining this result with Eq. (4.9) one can directly
connect the maximal �uctuations with the mean populations of the side modes

∆2F (π/2)/〈N 〉 ≈ 2〈N̂ +〉Q for e2κt � 1. (4.39)

�us, even small mean populations in the side mode lead to a large increase of the maximal
�uctuations, for example 10 atoms increase the coherent state �uctuations by a factor
of 20 making this a very sensitive probing scheme. �is is also true for other values of
qe� with 0 ≤ qe� ≤ −2Nc̃1. However, for di�erent values of qe� , −Nc̃1 we would �nd a
di�erent orientation of the squeezing ellipse in the Sx −Qyz plane as well as a modi�ed
time dependence.

4.11. Spatially resolved fluctuation spectroscopy
To measure these �uctuations experimentally we apply an rf π/2 spin rotation which
maps the relevant observable onto the population di�erence of the side-modes, i.e. F̂ (ϕS ) →
N − = N+1−N−1. For the spectroscopy we do not actively tune the measured spinor phase
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Figure 4.9.: Spin readout for spatially excitedmodes:An rf π/2-pulse is equivalent to
a three-port beamspli�er in optics. If the spin-mixing process has been tuned
into resonance with the �rst excited spatial mode, its antisymmetric mode
will interfere with the symmetric mode of the condensate at the output of this
beamspli�er. As a result the measured spin observable will also feature a spa-
tial antisymmetry. For the �rst excited mode we take the resulting symmetry
into account as follows: We split the absorption signal into two halves and
evaluate the atom number di�erence in each half, which corresponds to the
local spin observable F L/R in the le� (L) and right (R) half. Subtracting these
two values from each other yields the spin observable for the �rst excited
mode F (1)(ϕS) = F L − FR.

but evaluate the �uctuations at an arbitrary but �xed spinor phase ϕS. As the orientation
of the state will anyway change as we tune qe� we should be able to �nd a spectroscopy
signal in the variance. Additionally, as the state gets non-Gaussian for longer evolution
times we will de�nitely see an increased variance there.

Since the rf pulse transfers the population from the state (1, 0) to the side mode, the
states (1,±1) will be highly populated a�er the rotation. Experimentally, this eases the
detection of the population in (1,±1) and with that the extraction of the �uctuations in
N −. Such a measurement scheme is analogous to homodyne detection routinely used in
continuous-variable quantum optics [96]. �ere it enables the measurement of optical
�eld quadratures [112], which correspond to the spin measurement in our case, as well
as the measurement of small photon numbers without photon counting [113, 114].

To evaluate the contributions from the population of the ground mode, we analyze
the �uctuations of the atom number di�erence N − between the total population of the
states (1,±1). For spatially excited modes, however, we have to take into account the
symmetry of their respective wavefunction. As an example we take the �rst excited
mode the wavefunction of which has an antisymmetry between the le� and right half
as shown in Fig. 4.9a). Similar to a three-port beamspli�er the rf pulse employed for the
readout will not change the spatial mode of each input state, but it will mix in the output
states (1,±1)′ the antisymmetric wavefunction of the side modes with the symmetric
wavefunction of the condensate. �is leads to an interference of the two wavefunctions
depending on the phase between the condensate and the side modes. �is interference
leads to an asymmetry between the le� and right half in the states (1,±1)′. Because
the sign of the condensate contribution is reversed between the two output states, the
interference in the state (1,+1)′ will be opposite to the one in (1,−1)′. Consequently, if
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we detect in the le� half of (1,+1)′ a signi�cantly higher atom number we expect to �nd
in (1,−1)′ a higher atom number in the right half which is shown in Fig. 4.9b).

�us, evaluating the atom number di�erence n−,L/R = nL/R
+1 − n

L/R
−1 in the le� (L) and

right (R) half of the absorption image, we �nd that n−,L ≈ −n−,R. If we analyzed, as before,
N − = n−,L +n−,R, we would expect to �nd no signal for the �rst excite mode. Instead one
has to take the antisymmetry into account by evaluating N −,(1) = n−,L−n−,R. In the same
way, this analysis suppresses the signal from the symmetric ground mode. For higher
modes we would have to divide the signal further to take into account the respective
symmetry of the mode. In the following, we denote by N −,(k) the optimal analysis of the
k th mode.

To put this argument into theoretical terms, one considers the local observables F̂ (ϕS,y)
with F̂ (ϕS) =

∫
dxF̂ (ϕS,x). For example, the local spin operator Ŝx (y) is given by

Ŝx (y) =
1
√

2
ψ̂ †0 (y)

(
ψ̂+1(y) + ψ̂−1(y)

)
+ h.c.

≈
1
√

2
e−iϕ0â†0,c

(∑
k

ψ ∗c (y)ψk (y)â+1,k +
∑
k

ψ ∗c (y)ψk (y)â−1,k

)
+ h.c.,

(4.40)

where â±1,k is the annihilation operator for a particle in the state (1,±1) in the kth spatial
mode andψk(x) the corresponding wavefunction. Here, we assume that the particles in
the state (1, 0) always occupy the condensate wavefunction. �is means that the global
observable Ŝx =

∫
dxŜx (x) just contains contributions from the ground mode since∫

dxψ ∗c (x)ψk (x) ≈ δ0,k . And consequently the dynamics of the ground mode determines
the corresponding �uctuations ∆2Sx .

Analogously, the contributions of the �rst excited mode is described by the operator

F̂ (1) =

∫ yMid

−∞

dy F̂ (y) −

∫ ∞

yMid

dy F̂ (y). (4.41)

Similarly, we de�ne the operator F̂ (k) that contains the contribution from the k th excited
mode. �is entails spli�ing the integral at each zero-crossing of the spatial wavefunction
and reversing the sign a�er each zero-crossing. �is is analogous to a Fourier analysis,
but with the modes of the e�ective potential as basis functions.

Measuring the �uctuations therefore does not only allow us to measure the spin-
mixing process for small occupation numbers but additionally to �lter out the di�erent
mode contributions. �is is especially advantageous when the resonances overlap. To
demonstrate this, we prepare again a larger of 40, 000 atoms such that the di�erent spatial
modes have a signi�cant overlap and tune qe�. �e results are shown in Fig. 4.10. In the
experiment we normalize the �uctuations to the mean atom number 〈N +〉 in the side
mode, i.e. we compare the �uctuations to the shot-noise limit of a coherent polar state
with mean atom number 〈N +〉.

Already a�er 50 ms of evolution time we �nd a contribution from the three lowest
spatial modes to the spectroscopy corresponding to a mean population of about 40 atoms
in the ground mode and less than 2 atoms in the second excited mode. We also see that
the three modes have a large overlap but with our variance analysis we are able to resolve
the di�erent contributions.

A�er 140 ms of evolution time we also measure a signal from the second excited mode
at qe� = 16 Hz where this mode is expected to be o�-resonant. �is might indicate to
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Figure 4.10.: Fluctuation spectroscopy: We analyze the �uctuations of N −,(k) for the
three energetically lowest spatial modes and normalize them to the mean
atom number 〈N +〉 in the side modes. �e results are plo�ed here in semilog-
arithmic scale. A�er 140 ms of evolution time we �nd already indications of
multimode dynamics. �ese manifest via the growth of the second excited
mode in a region qe� ≈ 16 Hz where this mode should be o�-resonant.
To determine the error on the variance we use a jackknife resampling
method [115].

the onset of more complex multimode dynamics in which the approximations we used
before are no longer valid. For example, the spatial wavefunction of the state (1, 0)might
contain some contributions from spatially excited modes.

4.12. Tomography of spatial modes

For the spectroscopy we analyzed the �uctuations of N −,(k) at a �xed spinor phase ϕS. But
in the experiment this phase can also be tuned. For this, we switch o� the mw dressing
a�er a chosen evolution time which causes this phase to dynamically evolve as

ϕS(t) = ϕS,0 + 2π · qk2 t , (4.42)

which corresponds to a rotation on the spin-nematic sphere around Q0. Here, qk is the
energy di�erence between the state (1, 0) and the state (1,±1) in the kth mode. �is
energy di�erence contains the second-order Zeeman shi� qB = 56 Hz (at a magnetic
�eld of B = 0.884 G) and additional shi�s which can be calculated from the e�ective
potential. With this method we measure di�erent projections of the squeezed state which
corresponds to a tomographic analysis of the state. With Eq. (4.42) the time dependence
of the �uctuations can also be used to determine the energy of the di�erent spatial modes
with respect to the state (1, 0) as shown in Fig. 4.11a).

For this measurement, we prepare 40,000 atoms in the state (1, 0) and set the longitu-
dinal trapping frequency to ω‖ = 2π · 65 Hz. To populate the three energetically lowest
modes we tune qe� to −1, 4 and 11 Hz and let the system evolve for 160, 120 and 70 ms,
respectively. �ese values of qe� correspond to the maxima found in the spectroscopy
as shown in Fig. 4.10. We subsequently switch o� the mw dressing which causes the
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Figure 4.11.: Tomography of �uctuations: a) �e energy di�erence between the con-
densate mode and the k th spatial mode h qk is given by the second-order
Zeeman shi� and the mode spacing in the e�ective potential. �is energy
di�erence determines the time evolution of the spinor phase and with that
the orientation of the �uctuations ellipse as shown in the lower plot. b) Vari-
ance signal as a function of the phase evolution time for the three spatial
modes (color coding as in Fig. 4.10). We tune qe� to (11, 4, −1) Hz (upper,
middle and lower graph) with evolution times of 70, 120 and 160 ms, respec-
tively. To extract the frequency each signal is ��ed with a sine function
(dashed lines). For the second excited mode we �nd an additional decay of
the amplitude which we include in the �t as an exponential decay. For the
corresponding lifetime we extract a value of τ = 20 ms.

57



4.12. TOMOGRAPHY OF SPATIAL MODES

Figure 4.12.: Extracted oscillation frequencies: We plot the extracted oscillation fre-
quencies of a �t to the �uctuation signal as shown in Fig. 4.11 for the lowest
three spatial modes of the e�ective potential (blue points). We compare
these with the theoretical values for the energy eigenstates of the e�ective
potential according to Eq. (4.30). We �nd good agreement between the exper-
imental and theoretical values. �e error on the theory prediction originates
from the uncertainty on c1 as given in [94].

spinor phase to dynamically evolve before applying the rf-rotation for the readout. As
explained above we exploit the symmetry of the spatial modes to �lter out the desired
mode. For each se�ing of qe� we �nd that at least two spatial modes are populated as
shown in Fig. 4.11b). �e signal of each spatial mode is ��ed with a sinusoidal curve as
expected from Eq. (4.37) to extract the frequency, i.e. the energy of each mode. For the
second excited mode we �nd an additional exponential decay with a lifetime of ≈ 20 ms.

We then compare the experimental result to a numerical calculation of the energy
eigenstates in the e�ective potential given by Eq. (4.30) (see Fig. 4.12). �e error in the
theory calculation comes from the uncertainties on the sca�ering lengths taken from [94]
in Eq. (4.3) which amounts to a relative uncertainty on the spin dependent interaction
strength of ∆c1/c1 ≈ 16%. Interestingly, the experimental values feature a lower uncer-
tainty than the theoretical prediction. �eoretical and experimental values agree within
this error con�rming that the e�ective potential provides a good description of the ex-
perimental se�ing.
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5. Spatially distributed entanglement
and EPR steering

�e generation of entanglement between spatially distinct regions is a major challenge in
neutral ultracold systems as the interactions are mostly short ranged. �is has restricted
their use so far in quantum informational protocols which require entanglement between
individually addressable systems. While we have concentrated in the preceding chapter
on the characterization of the spin-mixing process in the e�ective potential, we will
now use this knowledge to generate a spin-nematic squeezed state in a single spatial
mode. Due to the indistinguishability of the atoms the resulting quantum correlations are
shared between all particles of the condensate. We demonstrate that these correlations
can be distributed between distinct spatial modes by expanding the atomic cloud. To
reveal entanglement we use the EPR steering criterion which additionally certi�es that
the generated entangled state is useful for quantum informational tasks. Based on the
steering criterion we develop an entanglement witness with which we verify at least
genuine 5-partite entanglement. �e main results presented in this chapter have been
summarized in [116].

5.1. Surpassing the standard quantum limit
As �rst shown in [24] spin-mixing leads to spin-nematic squeezing, i.e. the �uctuations
are redistributed such that the variance ∆2F (0) < 〈N 〉. Experimentally, this means that
we have to measure the population di�erence N − with a high precision such that we are
able to detect �uctuations below the shot-noise limit. �erefore, the experimental system
has to be carefully adjusted and calibrated to achieve the required sensitivity.

5.1.1. Shot noise limited detection
One major contribution to this precision is the technical stability of the rf and mw �eld
which we use for state manipulation. For example, we have to make sure that the power
of the rf �eld, which induces the π/2 spin rotation prior to the imaging, is stable. If the
power �uctuates, then in each realization the rotation would be slightly di�erent. �is
would add noise to our detection and would therefore limit our ability to measure an
absolute reduction of the �uctuations below the classical limit. In the experiment, the
power of the rf and mw �elds have already a very high stability (see Appendix A.4 and
A.5 for an analysis of the rf and mw stability). However, as these technical �uctuations
a�ect each atom individually the resulting variance scales with ∝ N 2. �us, we restrict
in the following the atom number to ≈ 11, 000 atoms compared to 40,000 atoms used in
the previous experiments to reduce the e�ect of residual technical �uctuations. Together
with the chosen trapping frequencies (ω‖,ω⊥) = 2π ·(51, 286)Hz, this lower atom number
has the additional advantage that the spin dynamics will be restricted to a single spatial
mode, i.e. the ground mode of the e�ective potential as shown in Fig. 4.7.
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5.1. SURPASSING THE STANDARD QUANTUM LIMIT

Figure 5.1.: Spectroscopy signal for a typical control measurement: In order to de-
tect dri�s of the mw power, we do a spectroscopy measurement every three
hours. �e plot here shows an example of a shi� in the spectroscopy by
1 Hz a�er two days of measurements. We use this information to exclude the
corresponding data in the post-analysis.

Furthermore, we have to ensure that the photon counts on the camera are converted
into the correct atom number. �e calibration of the imaging can be checked by measuring
the �uctuations of a coherent spin state (CSS) and showing that these equal the expected
shot-noise [82]. �us, for a correct imaging calibration, we expect to �nd for the coherent
polar state ∆2N −CSS = 〈N 〉. Suppose we did not extract the correct atom number and
instead the measured value Nk,M = αNk,R with k ∈ {−1, 0,+1} di�ered from the real
value Nk,R by some factor α , then measuring the �uctuations of a coherent polar state
would give

∆2N −CSS,M = ∆2(N+1,M − N+1,M) = α
2∆2(N+1,R − N+1,R) = α

2〈NR〉

= α 〈NM〉.
(5.1)

�us, if the measured atom number were smaller than the real one (α < 1), one would
measure reduced �uctuations even for a classical state. �is highlights the importance
of a correct imaging calibration. For details on this calibration see Appendix A.3.1.

5.1.2. Spectroscopy control sequence

We also have to take care that the value ofqe� is stable over many experimental realization.
A variation of this parameter would slightly change the orientation of the squeezed
state. �e measured �uctuations would, thus, be averaged over these orientations which
increases the �uctuations at the minimum.

In the experiments presented here, we set the magnetic �eld to B = 1.44 G which
leads to a second-order Zeeman shi� of qB = 149 Hz. For the mw dressing we employ
a resonant Rabi frequency of Ωmw = 2π · 9.46 kHz. Using Eq. (4.16) we can connect
the �uctuations of the mw power to the variations of qe�. It turns out that for qe� ≈ 0
already a change of the Rabi frequency by 2π · 30 Hz leads to a change in qe� by 1 Hz.
�is corresponds to a relative stability of the mw power on the order of 0.6%. We thus
use the externally stabilized mw described before to reduce the shot-to-shot �uctuations
of the mw power as much as possible.

60



CHAPTER 5. SPATIALLY DISTRIBUTED ENTANGLEMENT AND EPR STEERING

Figure 5.2.: Spin-nematic squeezing: �e measured �uctuations of N − are plo�ed a�er
150 ms of spin-mixing evolution time. �e dashed blue line is a sinusoidal �t to
the data and the black dashed line depicts the classical limit of a coherent polar
state. Tuning the spinor phase via dynamical evolution, we �nd a minimal
value of the �uctuations of ∆2N − = 0.19 ± 0.11. �is means that at this point
the �uctuations are squeezed by -7.2 dB. �e errorbars depict the 1 standard
deviation (s.d.) interval as extracted via jackknife resampling.

However, there are still small dri�s possible, for example, due to temperature changes
in the electronics. To detect this, we take a spectroscopy measurement of the spin-mixing
resonance every three hours and check for shi�s of the spectroscopy signal. We can then
either compensate these dri�s in the experiment or, alternatively, use these measurements
for a post-selection of the data. In the data analysis, we discard experimental realizations
as soon as we detect a shi� in the spectroscopy signal by 1 Hz.

For the spectroscopy measurement, we use an evolution time of 2 s. �e le� edge of
the spectroscopy signal features a steep slope, since the polar state suddenly turns from
highly unstable into a stable point with no transfer to the side modes. Using this point
as a reference we detect changes in qe� of ≈ 1 Hz (see Fig. 5.1). For the measurements
presented here, the spectroscopy signal was typically stable over the course of about
three to four days.

5.1.3. Spin-nematic squeezing

For measuring spin-nematic squeezing, we take special care to remove any residual pop-
ulation in the states (1,±1) a�er transferring the atoms to the state (1, 0), since already
a single atom increases the measured �uctuations a�er a π/2 spin rotation. �erefore,
in addition to the Stern-Gerlach pulse, we apply two mw π -pulses coupling the states
(1,±1) ↔ (2,±1) directly before switching on the mw dressing. �is removes any atoms
which are retrapped a�er the Stern-Gerlach or which are produced via o�-resonant spin-
mixing during the waiting time of 100 ms a�er the Stern-Gerlach pulse.

A�er preparation of the polar state we use mw dressing to initiate spin-mixing resonant
with the ground mode and let the state evolve for 150 ms. A�erwards, we adjust the spinor
phase via dynamical evolution under the second-order Zeeman shi�. In the end, we switch
o� the XDT to let the atomic cloud expand for 7 ms in the remaining waveguide potential
a�er which we use an rf π/2 pulse to map the observable F̂ (ϕS) onto the population
di�erence N −(ϕS). We �rst employ a fast scan with low statistic to determine the phase
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5.2. STEERING BETWEEN SPATIALLY DISTINCT REGIONS OF THE ATOMIC CLOUD
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Figure 5.3.: Distribution of entanglement in space: Using spin-mixing in a tightly
con�ning potential we generate entanglement that is shared among all iden-
tical atoms of the condensate. Subsequent expansion of the atomic cloud
distributes this entanglement in space. �e spatial resolution of the readout
allows us to de�ne distinguishable subsystems on the atomic signal. Using
EPR steering we can then test for entanglement between these spatial regions.

evolution time corresponding to ϕS = 0, i.e. measuring minimal �uctuations. A�er this
we sample four points around the minimum and maximum with very high statistics.

With this we �nd minimal �uctuations of ∆2N −(0)/〈N 〉 = 0.19 ± 0.11 well below
the classical limit of 1 (Fig. 5.2). Here, we additionally subtracted the photon shot noise
contribution which is calculated via Gaussian error propagation of the measured photon
numbers and amounts to 0.14. Even without subtraction we measure reduced �uctuations
of ∆2N −/〈N 〉 = 0.33±0.11. �e measured spin-nematic squeezing directly demonstrates
entanglement between the spins of the atoms [10, 117, 11]. Since the particles in the
condensate are indistinguishable this means that these correlations are shared between
all particles in the condensate [4, 5].

5.2. Steering between spatially distinct regions of the
atomic cloud

We now take a di�erent point of view on the expansion of the atomic cloud. In the
preceding chapter we used this method mainly to lower the optical density and to increase
the resolution in order to ease the detection of the di�erent spatial modes. However, from
a quantum informational point of view, we use the tight con�nement of the initial trap
to generate entanglement between the atoms via short range contact interaction. By
switching o� the crossed dipole beam the generated entanglement is distributed in space
via the expansion of the BEC. �is enables the generation of entanglement between
spatially distinct regions using just contact interactions. A�er the expansion the high
optical resolution of our imaging allows us to partition the atomic signal into distinct
regions (see Fig. 5.3).

In order to verify entanglement between distinct regions of the expanded atomic cloud
we use EPR steering. For this, the system needs to ful�ll two requirements: one needs
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CHAPTER 5. SPATIALLY DISTRIBUTED ENTANGLEMENT AND EPR STEERING

Figure 5.4.: Mean absorption image and analysis regions: Here, the average absorp-
tion signal over 1247 realizations a�er 150 ms of evolution time is shown.
�e red lines depict the evaluation regions. We use two di�erent color scales,
since a�er the π/2 rotation the population in (1, 0) is much smaller than the
one in the states (1,±1). �e mean population in (1, 0) amounts to 〈N0〉 ≈ 25
atoms which provides a direct measurement of the term V̂x − N̂

+ in the com-
mutation relation (5.2). Compared to the total atom number of 11,000 atoms,
the resulting correction for the uncertainty relation is less than 1% and thus
negligible. �e lower plot shows the density pro�le integrated in vertical di-
rection over all densities. �e dashed line indicates the bipartitioning of the
signal to de�ne the subsystems A and B.
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5.2. STEERING BETWEEN SPATIALLY DISTINCT REGIONS OF THE ATOMIC CLOUD

to be able to de�ne two distinct subsystems, A and B, and one needs to measure two
non-commuting observables in each of the two subsystems. In the case of spin-mixing
we choose the two observables F̂ (0) and F̂ (π/2). �ese two operators have the same
commutation relation as Ŝx and Q̂yz (see Eq. (2.17), i.e.[

F̂ (0), F̂ (π/2)
]
= i(2Q̂0 + V̂x − N̂

+). (5.2)

Experimentally, the rfπ/2 pulse maps the observable F̂ (ϕS) onto the population di�erence
N −(ϕS). �e commutation relation (5.2) is then translated into an uncertainty relation
for the population di�erence [36]

∆2N −(0)
〈N 〉

∆2N −(π/2)
〈N 〉

≥ 1, (5.3)

which is valid in each subsystem with the corresponding local atom number NA/B. For
Eq. (5.3) we have used the undepleted pump approximation, speci�cally that

〈(2Q̂0 + V̂x − N̂
+)〉Q ≈ 2〈N 〉. (5.4)

As an additional feature of the readout sequence we can check this approximation with
the recorded data since the rf pulse maps the observable V̂x − N̂ + onto the population
2N0. Even for the longest evolution time of 150 ms which is employed in the experiment
we �nd 〈2N0〉 < 100 compared to a total atom number of 11,000. �e correction for the
uncertainty relation is therefore less than 1% which con�rms that the undepleted pump
approximation is well justi�ed.

5.2.1. Steering inequality
Following the steering argument [20] we choose to use the measurement results obtained
in system B to estimate an inferred value N −A,inf(ϕS) for the corresponding measurement
result in system A. �e precision of this estimation is quanti�ed by the inference variance

∆2N −A|B(ϕS) = ∆2
(
N −A (ϕS) − N

−
A,inf(ϕS)

)
. (5.5)

Steering is veri�ed if this inference allows predicting the measurement results in A more
precisely than expected from the local uncertainty relation, i.e. if the steering product

SA|B =
∆2N −A|B(0)

NA

∆2N −A|B(π/2)
〈NA〉

< 1. (5.6)

It is important to note that one can use any post-processing of the data obtained in
subsystem B as this classical processing cannot a posteriori introduce entanglement. �e
steering criterion has the advantage that it does not require any a priori knowledge about
the measured state and, thus, provides an entanglement criterion that can be adapted to
a wide range of experimental systems.

5.2.2. EPR Steering between spatially distinct atomic clouds
Experimentally, we de�ne the two subsystems by dividing the absorption signal into
two halves, where we label the le� and right half as subsystem A and B, respectively.
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Figure 5.5.: Einstein-Podolsky-Rosen steering: a) Analyzing the variance ∆2N −A a�er
150 ms of evolution time in a single subsystem A yields reduced and enhanced
�uctuations compared to a coherent spin state (dashed line) consistent with
the uncertainty relation. �e black line is a theory prediction. b) Using the
measurement results in subsytsem B to estimate the corresponding results in
A leads to the inference variance ∆2N −A|B, where the maximal �uctuations are
largely reduced. c) Evaluating the steering product for 60 ms (red diamonds)
and 150 ms (blue diamonds) of evolution time reveals steering between the
two halves of the atomic cloud. �e square and the triangles indicate the
value of maximal and minimal �uctuations. �e steering persists even when
introducing an arti�cial barrier between the atoms by neglecting a fraction
of atoms η in the middle of the evaluation region which highlights the non-
local character of the generated entanglement. �e errorbars depict the 1 s.d.
interval.
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5.2. STEERING BETWEEN SPATIALLY DISTINCT REGIONS OF THE ATOMIC CLOUD

For the de�nition of the evaluation regions on the absorption image see Fig. 5.4. If we
neglect the information in part B and just analyze the populations di�erence N −(ϕS) in
the le� half (see Fig. 5.5a)), we �nd a�er 150 ms of evolution time reduced �uctuations at
ϕS = 0 compared to a classical coherent polar state. Likewise we �nd at ϕS = π/2 largely
enhanced �uctuations such that the uncertainty product ∆2N −A (0)∆

2N −A (π/2)/〈NA〉
2 =

0.41 · 49 is well above the uncertainty limit.
In a next step, we use the information gained in system B to estimate the measure-

ment results in system A. Since any post-processing in system B is allowed without
changing the steering criterion, we further subdivide B into 5 parts. From the result-
ing values N −B,k(ϕS) we estimate the results in system A via the linear combination
N −A,inf =

∑5
k=1 дk(ϕS)N

−
B,k(ϕS). �e real numbers дk(ϕS) are chosen to minimize the in-

ference variance ∆2N −A|B(ϕS) (5.5). �e measured inference variance is shown in Fig. 5.5b).
While the inference reduces the �uctuation for all measured spinor phases the strongest
reduction happens for the maximal �uctuations at ϕS = π/2 by a factor of 20.

We then use the inference variances at ϕS = 0, π/2 to calculate the steering product
as de�ned in Eq. (5.6). Experimentally, we �nd SA|B = 0.62 ± 0.12 and SA|B = 0.51 ± 0.19
a�er 60 ms and 150 ms of evolution time, respectively. For both experimental se�ings
we detect SA|B < 1 which con�rms EPR steering between the le� and right half of the
atomic cloud. To increase the statistics we included measurements in a 0.04π interval
around ϕS = π/2. Within this range the uncertainty relations and therefore the steering
criterion change by less than 2%.

To highlight the spatial separation of the entanglement we introduce a barrier by
symmetrically discarding a fraction of atoms η in a region in the middle of subsystem A
and B. �e results are shown in Fig. 5.5c). We verify steering up to a discarded fraction of
≈ 1/3 which corresponds to a spatial separation of ≈ 13.5µm between subsystem A and
B. �is demonstrates that entanglement between indistinguishable particles can indeed
be turned into quantum informational useful entanglement within the LOCC paradigm.

5.2.3. Monogamy of steering

For discarding more than a third of the atoms, we �nd that the steering criterion is no
longer satis�ed. �is result is consistent with monogamy of steering [118]. If we consider
the discarded region as subsystem C the monogamy relation is formulated as

SA|B · SA|C ≥ 1. (5.7)

�is means that if for example subsystem A is steered by B, i.e. SA|B < 1, it cannot
simultaneously be steered by C. �eoretically, discarding atoms is equivalent to tracing
out the corresponding part of the density matrix ρACB. If we assume that the entanglement
is evenly shared among all atoms, this implies that the reduced density matrix ρAB will be
closer to a mixed state the more atoms we discard. A�er discarding more than a third of
the atoms, region C contains more atoms than each of the other two regions individually.
�erefore the density matrix ρAC should feature stronger correlations than ρAB. �us, one
expects to �nd that A is steered by the region C and, consequently, one should not �nd
steering between A and B, which is consistent with our experimental result. Intuitively
one could also argue that every region contains some information about the measurement
results in A. However, by discarding more than a third of the atoms the discarded part
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CHAPTER 5. SPATIALLY DISTRIBUTED ENTANGLEMENT AND EPR STEERING

actually contains more information than B. �us, assuming monogamy of steering A
should be steered by the discarded system C and not anymore by B.

5.2.4. Beamspli�er picture

If we assume that the atoms do not interact during their expansion in the waveguide
potential, we can also think of the partitioning of the absorption signal in terms of beam-
spli�ing operations. Such a treatment has also been used in optics to describe partitions
of an expanding light �eld [119, 67]. We will demonstrate in the following that this de-
scription is consistent with our experimental �ndings. In this respect, the experiment
can be viewed as direct implementation of the theoretical proposal discussed in [16] to
distribute entanglement between identical particles among distinguishable modes via
beamspli�er operations.

A�er spli�ing the absorption image into two halves there is a 50% probability in each
magnetic substate to �nd a particle in system A or B. In this respect, we treat the initial
condensate modes âk with k ∈ {−1, 0, 1} as one input of a balanced beamspli�er where
the second input port âaux,k is initially empty. �ese input operators are then connected
to the output ports A and B via(

âA,k
âB,k

)
=

1
√

2

(
1 1
1 −1

) (
âk

âaux,k

)
. (5.8)

With this we can connect the relevant observables in subsystem A and B to the single
mode operators of the initial condensate, i.e.

F̂A(ϕS) =
1
√

2

[
e−i(ϕS−ϕS,0)â†A,0(âA,+1 + âA,−1) + h.c.

]
=

1
2
√

2

[
e−i(ϕS−ϕS,0)(â†0 + â

†
aux,0)(â+1 + âaux,+1 + â−1 + âaux,−1) + h.c.

]
,

(5.9)

and analogously for F̂B(ϕS). Using the undepleted pump approximation and the fact
that the second input port is initially empty we can calculate the �uctuations of these
observables in the respective subsystem (see supplementary information in [116])

∆2FA(ϕS)

〈N /2〉 =
1
2 [1 + cosh(2κt) − sinh(2κt) cos(ϕS)]. (5.10)

�is shows that even for in�nite squeezing the minimal �uctuations, that can be measured
in one half, are bounded by 1/2. For an in�nitely squeezed one would �nd globally that
atom numbers in (1,±1) are always perfectly correlated, i.e. N+1 = N−1 = N /2, and, thus,
∆2N − = 0. However, the beamspli�er introduces binomial �uctuations in each subsystem.
Using a binomial distribution with probability pA = 0.5 to detect a particle in system A
we can calculate the residual �uctuations in A for an in�nitely squeezed state via

∆2N −A = ∆2NA,+1 + ∆
2NA,−1

= pA(1 − pA)
〈N 〉

2 + pA(1 − pA)
〈N 〉

2 =
1
2
〈N 〉

2
(5.11)
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Within the undepleted pump approximation we analogously calculate the correlations
between the two halves

〈F̂A(ϕS)F̂B(ϕS)〉Q

〈N /2〉 =
1
2 [−1 + cosh(2κt) − sinh(2κt) cos(ϕS)]. (5.12)

�us, for the inference operator F̂A|B(0) = F̂ (0)A + F̂ (0)B at the minimum one �nds

∆2(FA|B(0))
〈N 〉

= (∆2FA(0) + ∆2FB(0) + 2〈F̂A(0)F̂B(0)〉Q)/〈N 〉

≈ e−2κt ,

(5.13)

where we used for the last equality that κt � 1. �ese �uctuations are identical to the
squeezing found in Eq. (4.38). �is is not surprising as such an evaluation corresponds
to measuring the whole cloud without partitioning the signal.

Analogously, we �nd for the inference operator F̂A|B(π/2) = F̂A(π/2) − F̂B(π/2) at the
maximum

∆2(FA|B(π/2)
〈N 〉

= 1. (5.14)

�is means that the �uctuations at the maximum are reduced to the shot-noise limit. �is
con�rms the argument we used previously to distinguish the di�erent spatial modes in the
�uctuation signal (see Sec. 4.11), i.e. the antisymmetric analysis cancels the contribution
from the symmetric ground mode. For the steering criterion one then has to calculate
the product

SA|B =
∆2(FA|B(0))
〈2N 〉 ·

∆2(FA|B(π/2)
〈2N 〉 = 4e−2κt . (5.15)

�us, within this beamspli�er description it is indeed possible to verify steering as soon
as the overall squeezing exp(−2κt) < 0.25.

To incorporate di�erent spli�ing ratios between the two subsystems we can change the
coupling matrix to the one of an imbalanced beamspli�er. �is changes, for example, the
operators in A to âA,k = (

√
ηA âk +

√
1 − ηA âaux,k) with the atomic fraction ηA = NA/N

in A. �e scenario can also be extended to the case where we discard a fraction of the
atoms. For this one de�nes three output ports A, B and C. Consequently, one needs two
initially empty input ports. For more details see supplementary information in [116].

5.2.5. Steering and entanglement in di�erent experimental
se�ings

In parallel to our results there have been two other experiments which achieved entan-
glement between spatially separated modes. In [120] they used ≈ 500 Rb atoms in a
two-component BEC on an atom chip. A�er generating a spin squeezed state and ex-
panding the atomic cloud they similarly observe steering between spatially distinct parts
of the cloud. As their expanded cloud is more radially symmetric they can also partition
the absorption signal along the second spatial direction and with that observe steering
between a variety of post-selected pa�erns.

In [111] they employ, similar to our experiment, a spinor BEC of 87Rb with around
20,000 particles. �ere, spin-mixing is tuned into resonance with the �rst excited state
of the e�ective potential which is subsequently populated by a relatively large number
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Figure 5.6.: �reeway EPR steering: We divide the absorption signal into three parts of
equal lengths (≈ 20µm), labeled A, B and C. By combining the measurement
results in two subsystems we infer the corresponding results in the remaining
one and determine the steering product, which is denoted by the red and
blue diamonds for 60 and 150 ms of evolution time, respectively. For both
evolution times, we �nd a violation of the steering inequality for all three
combinations. �is con�rms threeway steering. �e errorbars correspond to
the 1 s.d. interval.

of 5,000 particles. In this se�ing, they verify entanglement between the two halves of
the atomic cloud. �is con�rms that the scheme presented here for generating entangle-
ment between spatially distinct regions is not limited to our special choice of parameters.
Instead it has been demonstrated to work in di�erent atom number regimes and for
di�erent interactions, i.e. in a spin-1 and a pseudo-spin 1/2 system.

5.2.6. Threeway EPR steering

As argued above, we expect the correlations to be evenly distributed over the whole
atomic cloud. �erefore, we divide the absorption signal into three parts of equal length
(≈ 20µm), labeled A, B and C. Analogously to the bipartite case, we calculate the infer-
ence variance ∆2N −A|BC for all permutations of ABC. As shown in Fig. 5.6 we �nd that each
part of the atomic cloud is steered by the remaining parts which demonstrates threeway
steering [67]. Fundamentally, the detection of symmetric EPR steering puts some addi-
tional constraints on local hidden variable models [20]. But as steering still includes the
assumption of the uncertainty relation, it cannot rule out all local hidden variable models.
�reeway steering also has applications in quantum information protocols where it is
discussed in the context of quantum secret sharing schemes. �e idea is that two parties
would have to work together to correctly predict the measurement results of the third
party [121] which can then be used to establish a secure communication channel between
the three parties. Since the size of a BEC is not well suited for this kind of quantum com-
munication, we use threeway steering here as a measure to characterize the generated
entanglement structure.
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Figure 5.7.: Genuine 5-partite entanglement: In the bipartite steering scenario, the
steering product can be used to construct a witnessWm for genuine multi-
partite entanglement. For this we divide the signal again into two parts A
and B, where the partition is quanti�ed by the fraction of atoms ηA = NA/N
in A. �e blue shadings indicate the regions where genuine m-partite en-
tanglement is witnessed with the corresponding m given on the right. �e
entangled subsystems are given by A andm−1 further subdivisions of B with
equal atom number (see inset for an example). �e region marked by the red
shading is quantum mechanically inaccessible as it is below the uncertainty
limit of the inference operators used for the steering product. Using this wit-
ness we reveal up to genuine 5-partite entanglement for both evolution times.
�e errorbars depict the 1 s.d. interval.

We restrict the analysis to threeway steering since more partitions of the absorption
signal would lead to smaller evaluation regions. If the length scales become too small
one has to take into account classical correlations that are induced by the absorption
imaging which distributes the atomic signal over multiple pixels on the camera. �is
will be discussed in detail later. We quanti�ed these classical correlations by analyzing
the partitions of a coherent polar state and found that for partition lengths above 20µm
these correlations are negligible.

5.3. Detection of genuine 5-partite entanglement
EPR steering gives a stronger constraint on the quantum state than entanglement in the
sense that not all entangled states feature steering. �is enables the construction of a
witnessWm for genuinem-partite entanglement based on the bitpartite steering product
SA|B. For this we divide the absorption signal again into two parts A and B, where the
partition is quanti�ed by the fraction of atom ηA = NA/N in A. In this case, we use the
inference N −A,inf(ϕS) = д(ϕS)N

−
B (ϕS) without further subdivisions of B di�erent to before.

Again, the factors д(ϕS) are chosen to minimize the corresponding inference variance.
Based on this inference, we generalize the derivation in [67] (for details see [116]) to
construct the following witness for genuinem-partite entanglement

Wm =
ηA

1 − ηA

(1 −
√
SA|B)

д(0)д(π/2) <
3 −m
m − 1 . (5.16)
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Ful�lling Eq. (5.16) means that the state must be at least genuinely m-partite entangled,
where the entangled subsystems are de�ned by A and and m − 1 subdivisions of B with
equal atom numbers. �is witness is valid as long as д(0) · д(π/2) < 0. �is translates
to measuring correlations between the two systems in one operator basis and anticor-
relations in the conjugate basis which is anyway a precondition to detect steering as
explained in 2.5.2.

For m = 3 one recovers the usual steering inequality showing that there is a close
connection between steering and higher partite entanglement in continuous-variable
systems. For m = 2 we �nd another bound for bipartite entanglement. In the limit of
m →∞ the right hand side of Eq. (5.16) becomes −1. �is value corresponds to the limit
on the steering product SA|B determined by the uncertainty relation[

F̂A,in f (0), F̂A,in f (π/2)
]
=

[
F̂A(0) + д(0)F̂B(0), F̂A(π/2) + д(π/2)F̂B(π/2)

]
(5.17)

of the inference operators. �us, a value below −1 is excluded by quantum mechanics.
As explained before, we experimentally divide the absorption signal again into two

subsystems and vary the spli�ing between the two system which we characterize by the
inferred fraction ηA = 〈NA/N 〉. By inferring the results in A by B, we �nd up to genuine
5-partite entanglement for both spin-mixing evolution times as shown in Fig. 5.7. �is
means explicitly that, if we would subdivide B into four further subsystem with equal
atom numbers, one would �nd that the whole system is genuinely 5-partite entangled.
�e subdivisions of B are de�ned in a particle basis. But as shown in this chapter, this
can be converted into entanglement between individually addressable modes. �us, this
witness further characterizes the entanglement structure and the potential usefulness of
the generated state for quantum information protocols.

5.4. Experimental imperfections

To identify possible improvements in the experimental setup we compare the squeezing
results with a theoretical prediction that has been calculated via a truncated Wigner
simulation (see Fig. 5.8 and for a full quantum calculation see supplementary information
in [116]). By adjusting the simulation to the extracted maximal variance ∆2N −(π/2)/〈N 〉
we obtain the spin-mixing parameters Nc̃1 = −2.5 Hz and qe� = 2.4 Hz. According to the
simulation we should measure a�er 150 ms of evolution time a much higher spin-nematic
squeezing of ≈ −20 dB compared to the experimental value of ≈ −7.2 dB.

In the simulation, we can model these deviations by introducing shot-to-shot �uc-
tuations on the resonant Rabi frequency of 6 Hz. �is corresponds to relative power
�uctuations of 0.1% and translates to a �uctuation of qe� by 0.2 Hz. �is leads to a vary-
ing orientation of the squeezed state which e�ectively results in a larger variance at the
minimum. Another e�ect which reduces the observed squeezing is the �nite stepsize for
scanning the spinor phase. Experimentally, we employed a phase-stepping of 0.03π . If
one assumes that we missed the minimum by half a stepsize which is the largest possible
deviation, this leads to the same squeezing as observed in the experiment.

As the squeezing measurement becomes for longer evolution times more sensitive on
the correct se�ing of the spinor phase, these two contribution mainly a�ect the exper-
imental result a�er 150 ms of evolution time. In the end the measured �uctuations are
probably caused by a combination of both e�ects, i.e. the q-�uctuations might in reality
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Figure 5.8.: Comparison theory vs. experiment: We compare the theoretical expecta-
tion (blue lines) for ∆2F (0) and ∆2F (π/2) obtained via a truncated-Wigner
simulation with the experimental data (gray points). �e parameters of the
simulation have been adjusted to match the measured maximal variances. We
�nd signi�cant deviations from the ideal theory prediction for the data point
obtained a�er 150 ms of evolution time. We can model these �uctuations ei-
ther by including power �uctuations on the mw dressing (red curve) or by
assuming that we experimentally missed the optimal spinor phase se�ing
by half of the chosen stepsize (green line). �e rise of ∆2F (0) a�er 150 ms of
evolution time indicates the departure from the undepleted pump approxi-
mation.

be lower and the remaining excess �uctuations stem from the �nite stepsize used in the
experiment to scan the spinor phase.

5.5. Classical correlations induced by imaging

In the steering evaluation we restricted the length of the partitions to a value above 20µm.
For smaller regions, classical correlations caused by the absorption imaging might become
relevant. To quantify these correlations we analyze the �uctuations of a coherent spin
state (CSS). For this we prepare all atoms in the state (1, 0) and apply an rf π/2-rotation
without any spin-mixing evolution.

A�er partitioning the resulting absorption signal into regions of equal length we evalu-
ate their �uctuations ∆2N −i,CSS. �eoretically, for each subsystem i the �uctuations should
be equal to the corresponding mean atom number 〈Ni〉. For small partition lengths, how-
ever, we �nd a reduction of the �uctuations below the classical limit as shown in Fig. 5.9a).
�e reason for this is that during the imaging process the absorption signal of each atom
is spread out over multiple pixels. �is leads to classical correlations between the pixels
over a certain length scale as visualized in Fig. 5.9b).

We �nd that the reduction of �uctuations is well described by a function of the form

ζ (x) =

√
bx2

1 + bx2 , (5.18)

where x is the length of the partition. At |x |1/2 = 1/
√

3b one �nds a reduction of
∆2N −i,CSS/〈Ni〉 = 0.5. From the �t we extract a value of |x |1/2 = 2.0 ± 0.1µm. To connect
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Figure 5.9.: Classical correlations a�er absorption imaging: a) We prepare a coher-
ent spin state by initializing all 11,000 atoms in the state (1, 0). A�er an rf
π/2-rotation we partition the absorption signal into regions of equal length
and analyze their �uctuations which are normalized to their classical expecta-
tion. For small length scales we �nd a reduction of the �uctuations which we
�t according to Eq. (5.18) (blue dashed line). For length scales above 20µm we
�nd these correlations to be negligible. �e errorbars depict the 1 s.d. interval.
However, it should be noted that the shown data points are not statistically
independent. b) During imaging the absorption signal of each atom is spread
over multiple pixels due to the �nite width of the point spread function. �is
leads to correlations between neighboring pixels as indicated on the right
side. c) By employing a Mont-Carlo simulation we connect the ��ed value
of b with the width of the point spread function σPS of the imaging. We ap-
proximately �nd 1/

√
3b ≈ 2σPS. With this we extract a width of σPS = 1µm.

this value to the width σPS of the imaging point spread function we employ Monte-Carlo
simulations of the imaging process where we tune the value of σPS. From this simulation
we extract the relation σPS ≈ |x |1/2/2 (see Fig. 5.9c)). �us, we obtain for our experimental
se�ing a value of σPS ≈ 1µm.

One contribution to this point spread function is the optical resolution which in our
case amounts to σopt ≈ 0.55µm [82]. An Additional contribution comes from the photon
recoil of the imaging light. While sca�ering the photons each atom performs a random
walk which leads to a spread of its signal beyond the optical resolution. An upper limit to
this e�ect is given by [122] σsc = vrec

√
Γscτ

3/2/3. Here, Γsc = 2π ·6 MHz/2 is the sca�ering
rate for high saturation andvrec = 6 mm/s is the recoil velocity. For our imaging duration
τ = 15µs we �nd σsc ≈ 0.5µm. �ese two e�ects together would amount to a point
spread function with width σPS =

√
σ 2

sc + σ
2
opt = 0.74 suggesting that these are the main

contributions to the classical correlations.

In the steering analysis we restricted the partition lengths to > 20µm which is well
in the saturation regime of ζ (x).
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5.6. Undefined Larmor phase

In the treatment above we neglected the Larmor phase and assumed that our readout
works always at a �xed ϕL = 0 such that we measure in each shot F (ϕS). Experimen-
tally, however, this phase is uncontrolled. �is is because for the initial polar state ϕL
is unde�ned and we provide no phase reference via an rf-pulse. �us, as soon as spin-
mixing populates the states (1,±1) this phase is randomly chosen. On the other hand,
even if we would accidentally provide some phase reference in the beginning ϕL would
be randomized a�er a few ms due to magnetic �eld �uctuations.

To account for the Larmor phase we de�ne the operator

F̂⊥(ϕS,ϕL) = cos(ϕS − ϕS,0)Ŝ⊥(ϕL) + sin(ϕS − ϕS,0)Q̂⊥(ϕL), (5.19)

where the operators Ŝ⊥(ϕL) and Q̂⊥(ϕL) are de�ned as in Eq. (2.15). �e problem is that
for this operator the commutator as in (5.2) is now[

F̂⊥(0,ϕL,1), F̂ (π/2,ϕL,2)
]
= 2iN̂ · cos(ϕL,1 − ϕL,2), (5.20)

where we neglected here the correction part. �is means that for ϕL,1 − ϕL,2 = π/2 the
commutator and therefore the steering bound vanishes. However, in the following, we
will show that the steering bound given above is still valid, if we assume that the Larmor
phase is indeed random in every realization.

For that we de�ne the uncertainty bound b = ∆2F⊥(0,ϕL)∆
2F⊥(π/2,ϕL) which is the

same for each value of ϕL. We then assume that in each experimental realization we
randomly sample ϕL from a discrete set containing nL values. �e uncertainty product is
then given by

1
nL

∑
i

∆2F⊥(0,ϕL,i)
1
nL

∑
j

∆2F⊥(π/2,ϕL,j) ≥
1
n2

L

∑
i

∆2F⊥(0,ϕL,i)
∑
j

b

∆2F⊥(0,ϕL,j)

=
b

n2
L

∑
i,j

ηij

=
b

n2
L

[
nL +

∑
i<j

(
ηi,j +

1
ηi,j

)]
≥

b

n2
L

[
nL + 2nL (nL − 1)

2

]
= b,

(5.21)

where we have de�ned ηi,j = ∆2F (0,ϕL,i)/∆
2F (0,ϕL,j) and used that ηi,j + 1/ηi,j ≥ 2 for

ηi,j > 0. �is derivation can also be extended to the continuous case by exchanging the
summation with an integral.

�eoretically one could also argue that starting with a polar state the �uctuations are
symmetric with respect to the Larmor phase. Since the spin-mixing process is indepen-
dent of the Larmor phase this symmetry will not change during the evolution and it
does not ma�er which Larmor phase is read out, since it will always be bounded by the
uncertainty product (5.3). �is argument, however, makes assumptions about the state
that has been produced which is always di�cult to prove in reality. Experimentally, there
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could be some unidenti�ed process which breaks the symmetry of the state with respect
to the Larmor phase. But since the randomization of the Larmor phase is ensured by the
magnetic �eld �uctuations, this experimental imperfection is turned into a feature that
ensures the validity of the steering argument.

75





6. Simultaneous readout of
conjugate observables

For the measurement results in the preceding chapters we have used projective measure-
ments as outlined in the theory part 2.3. By measuring the atomic populations in the
di�erent magnetic substates of the F = 1 hyper�ne manifold, we projected the spin-1
state onto an eigenbasis of its Hilbert space. With this method the detection is limited to
extract information only about commuting observables of the spin-1 state and in order
to access noncommuting observables we have to prepare the same state again and apply
a unitary prior to the measurement, e.g. tuning the spinor phase ϕS as to measure the
noncommuting observables F̂ (ϕS).

�ere exist, however, also more general notions of a quantum measurements which are
o�en discussed in the context of so-called positive operator valued measures (POVMs) [34].
It turns out that with these types of measurement it is possible to extract information
about multiple noncommuting spin-1 observables in a single experimental realization.
In the following, we will give a short overview over the theory of POVMs and show
how they can be experimentally implemented. �is provides a powerful method to an-
alyze quantum states and we demonstrate that it can even be used to extract quantum
correlations. �e main results presented in this chapter have been summarized in [123].

As a short note: since in the following chapters, the magnetic substates of the F = 2
manifold will also play a central role, we adjust the previously used notation and include
a label of the hyper�ne manifold when referring to a speci�c substate. �is means we
change the subscripts, for example, of the creation operators âmF → âF ,mF .

6.1. Positive operator valued measures
In the theory part we introduced projective measurements as standard measurement
techniques to extract information out of a given quantum state. Mathematically, the
main di�erence to a measurement basis of projectors is that POVM elements (Êi ) do
not have to be orthogonal, this means for the corresponding single particle operators
Êi Êj , 0 (for i , j). As a direct consequence a POVM can have more elements than
the dimension of the Hilbert space. As an example for the spin-1 case, one can de�ne
the following POVM elements which will be useful to illustrate the connection to an
experimental implementation

Ê0 =
1
6 N̂ +

1
4 Ŝx +

1
8V̂x −

1
16Q̂zz, Ê1 =

1
6 N̂ −

1
4V̂x +

1
8Q̂zz,

Ê2 =
1
6 N̂ −

1
4 Ŝx +

1
8V̂x −

1
16Q̂zz

Ê3 =
1
6 N̂ +

1
4 Ŝz +

1
8Q̂zz, Ê4 =

1
6 N̂ −

1
4Q̂zz,

Ê5 =
1
6 N̂ −

1
4 Ŝz +

1
8Q̂zz .

(6.1)
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Figure 6.1.: POVM measurement scheme: Coupling the state in F = 1 to initially
empty auxiliary modes one e�ectively increases the dimension of the Hilbert
space for the readout. Performing independent manipulations in both Hilbert
spaces together with a projective measurement on an ensemble of particles
yields a distribution of particles over all modes involved in this measurement
scheme. In analogy to a standard projective measurement, as introduced in
Fig. 2.4, the populations in these modes contain information about the ob-
servables of the quantum state. Since this measurement schemes involve
more modes, we gain access to additional observables which can even be
non-commuting. �is constitutes a generalized measurement which is o�en
described in the framework of positive operator valued measures (POVMs).
Experimentally, we implement this scheme by coupling the state in the F = 1
hyper�ne manifold via mw �elds to the initially empty magnetic substates in
F = 2. Together with independent spin rotations in both hyper�ne manifolds
we have full control over the readout basis which enables the simultaneous
extraction of multiple spin-1 observables.
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One can immediately verify the completeness relation
∑

i Êi = N̂ . Additionally, the last
three elements are not orthogonal with respect to the rest of the POVM elements. By
comparing the last three elements with Eq. (2.22) one �nds that these correspond to a
projective measurement in the Ŝz basis (with an additional factor of 1/2). �e �rst three
elements correspond to a measurement in the Ŝx basis, i.e. a projective measurement
a�er a π/2 spin rotation. �erefore, within this POVM formalism it is possible to extract
information about two non-commuting observables, as in this example about the spin in
x- and in z-direction, which is di�erent from conventional projective measurements.

6.1.1. Naimark’s extension

It has been shown that POVMs can be implemented by performing a projective measure-
ment in a higher dimensional manifold. �is is known as Naimark’s extension [124] and
is schematically shown in Fig. 6.1. By coupling the state to initially unoccupied modes
one e�ectively increases the dimension of the Hilbert space for the readout. Performing
unitary transformations in the original and auxiliary Hilbert space allows se�ing the
desired POVM. In the end, one uses a projective measurement in this enlarged space to
extract the information. Since the population of each basis state in this enlarged Hilbert
space contains some information about the quantum state, one would intuitively expect
that such a scheme could enlarge the information that one can extract from a single
projective measurement. In the single-particle case, such readout techniques have for
example been used for quantum state discrimination [125].

Experimentally, the extension of the Hilbert space corresponds to coupling the spin-1
state to the initially unoccupied magnetic substates of the F = 2 hyper�ne manifold. For
example, the POVM (6.1) is implemented by �rst using 3 mw π/2-pulses coupling the
states (1,k) ↔ (2,k) with k ∈ {0,±1}. �is transfers in the mean half of the population
to the F = 2 manifold. �ese populations contain the information about the z-component
of the spin. Applying a π/2 spin rotation in the F = 1 manifold selectively changes the
readout basis there to the Ŝx basis. �us, a�er a projective measurement of the populations
in both manifolds one can identify 〈Êi〉Q for i ∈ {0, 1, 2} with the mean populations of the
magnetic substates in the F = 1 manifold and, analogously, 〈Êi〉Q for i ∈ {3, 4, 5} with the
mean population of the substates in the F = 2 manifold. �is enables the simultaneous
readout of the two spin directions. One may wonder, how such a measurement scheme
can be consistent with the uncertainty relation. I turns out that the coupling to the
initially unoccupied modes will introduce additional �uctuations which will lead a less
precise readout of the two observables. We will discuss this in more detail later.

6.1.2. Informationally complete measurements

For completeness, we brie�y introduce two special types of POVMs which are used in
the quantum information literature. As mentioned in 2.3, a general quantum state in
d dimensions is described by d2 − 1 operators and a standard projective measurement
within this Hilbert space yields information aboutd−1 commuting observables. Similarly,
a POVM consisting of n elements provides information about n − 1 operators as one
information is contained in the sum of all POVMs which yields the total atom number
or equivalently the normalization of the state. �erefore, to probe all relevant operators
of a general single-particle state with a single measurement se�ing, one needs a POVM
with at least d2 elements. If the POVM contains information about all d2 − 1 operators it
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is called informationally complete [126, 127]. If the state is pure, then only 2d elements
are needed for informational completeness [35].

�us, a�er measuring an ensemble of independent particles with this kind of POVM,
one can estimate all parameters of the quantum state. In general, the precision of this
estimation is not only given by the number of particles but also depends on the observable
one a�empts to estimate. Take as an example the implementation of the simultaneous
readout of Sx and Sz discussed before. If one use a di�erent coupling to the F = 2 manifold,
e.g. transferring a quarter of the population to F = 2, then the precision on the spin in
x-direction will be�er than on the one in z-direction.

�at is why there exist a special type of informationally complete POVMs, the so-
called symmetric informationally complete (SIC) POVMs [128]. �ese have exactly the
minimal number of d2 elements and the corresponding POVMs Ei have the same inner
Hilbert-Schmidt product [129]

tr
[
Êi Êj

]
=

1
d + 1 . (6.2)

�is means that the basis states |ϕi〉 of the measurement operators, with Êi = |ϕi〉 〈ϕi |,
all have the same overlap ��〈ϕi |ϕj〉��2 = 1

d + 1 . (6.3)

�is ensures that all observables are measured with the same precision. For a spin-1/2
system this graphically means that the measurement bases are along equiangular lines
in the spin sphere.

6.2. Experimental implementation

As shown before, POVMs can be implemented by a readout in some higher dimensional
manifold. Experimentally, we use the initially unoccupied magnetic substates of the
F = 2 manifold as auxiliary modes to extend the dimension of the Hilbert space for the
readout. Since our imaging is capable to selectively address each manifold, we can read
out all populations in a single experimental realization and thereby increase the accessible
information. Even without hyper�ne selective imaging we would still be able to gain
additional information by populating the magnetic substate (2,±2) where the di�erent
magnetic moment would lead to a selective imaging a�er Stern-Gerlach separation.

As a short note: Inserting the numbers for a spin-1 system with dimension d = 3, we
would need 9 POVM elements for an informationally complete measurement of the single-
particle state. Together with the magnetic substates in F = 2 we have in total only 8 levels
for the readout. �erefore we cannot directly implement an informationally complete
measurement by just using unitary transformation in the two hyper�ne manifolds. To
get simultaneous information about all spin-1 operators, one could, for example, couple a
small fraction of the atoms from one magnetic substate in the F = 1 manifold to F = 2 and
measure these atoms with a separate imaging pulse. A�erwards one uses all 8 magnetic
substates to implement the remaining POVM elements. With the right unitaries one
could then get an informationally complete measurement basis.

In order to experimentally implement arbitrary POVMs we need to have complete
control over the measurement basis in both manifolds. It has been shown that this is
achieved by mw coupling between the hyper�ne manifolds and additionally the ability
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Figure 6.2.: Rabi oscillations with a single rf coil: A single rf coil generates a linearly
oscillating �eld that can be decomposed into two counterrotating �elds as
indicated by the dashed and solid arrows. Since the sign of the g-factor is
di�erent in F = 1 and F = 2, the Larmor precession has a di�erent orientation
in each manifold. By using a single rf-coil for spin rotations the spin in each
manifold couples to the component of the magnetic �eld that has the same
orientation of rotation (solid arrow). �erefore a�er preparing an initial state
within a 50/50 superposition of the state (1,−1) and (2,−2) one observes Rabi
oscillations in both manifolds. For F = 2 we evaluated the atom number
di�erence N Sz

2 = 2N2,+2 + N2,+1 − N2,−1 − 2N2,−2, which corresponds to the
z-projection in an spin-2 system.

to perform selective spin rotations within each manifold [130]. As an example, take the
POVM elements in Eq. (6.1). For an implementation, we would need to perform a spin
rotation in F = 1 without coupling the substates in F = 2.

6.2.1. Hyperfine selective spin rotations

In Sec: 3.4 we have already discussed that a single rf-coil can be used to induce spin
rotations in both hyper�ne manifolds. Because the absolute value of the �rst-order g-
factors are nearly the same for both manifolds (|д1,1 | ≈ |д1,2 |), the resonance frequency
will at a typical magnetic �eld of 1 G only di�er by about 2 kHz which is on the same order
as our typical Rabi frequencies. �erefore, even if we tune the frequency of the rf-�eld
into resonance with the F = 1 hyper�ne manifold we will simultaneously o�-resonantly
couple the magnetic substates in the F = 2 manifold as shown in Fig. 6.2.

�e g-factors of the two manifolds, however, have di�erent sign. �us, the Larmor
precession has a di�erent orientation in each manifold. But with a single rf-coil we can
not exploit this di�erence because the linearly oscillating �eld, that is generated by the
coil, can be decomposed into two counter-rotating magnetic �elds. In each manifold the
state couples then to the rotating �eld that corotates with the Larmor precession.

To exploit the di�erent signs of the g-factors we combine the �elds of two rf-coils to
generate a rotation magnetic �eld. For that, we matched the individual Rabi frequencies,
such that the oscillating magnetic �elds have the same amplitude at the position of
the atoms. We then tune the phase di�erence of the two oscillating �elds to generate
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Figure 6.3.: Selective spin rotations: Using two rf coils one can generate a rotating
magnetic �eld which selectively couples, for example, the magnetic substates
of the F = 1 manifold as shown in the le� plot. Experimentally we tune the
phase di�erence Φ− = (ϕrf,1 −ϕrf,2)/2 by adjusting the phase of the second rf-
coil ϕrf,2. We extract the Rabi frequency in both manifolds for di�erent values
of ϕrf,2 (right plot) and �t the resulting data according to Eq. (6.8) (dashed
line). We �nd a nearly complete suppression of the coupling in F = 1 for
ϕrf,2 = 0.40π and in F = 2 for ϕrf,2 = −0.72π

a rotating �eld which will only couple the respective hyper�ne manifold. If the two
magnetic �elds are in orthogonal direction they are described by the Hamiltonian

Ĥrf(t) = 2~Ωrf,0
[
cos(|ω0 |t + ϕrf,1)Ŝx + cos(|ω0 |t + ϕrf,2)Ŝy

]
. (6.4)

Again, we write here just spin-1 operators, but the treatment is completely equivalent
when exchanging these operators with the corresponding ones in F = 2. Analogously to
Eq. (3.5) we transform into the rotating frame with the same orientation as the Larmor
precession which yields

Ĥ rot
rf =2~Ωrf,0 cos

(
Φ− ±

π

4

)[
cos

(
Φ+ ∓

π

4

)
Ŝx ∓ sin

(
Φ+ ∓

π

4

)
Ŝy

] (6.5)

for sgn(д1,F ) = ±1. Here, we de�ned the sum and di�erence phase of the two rf �elds as
Φ+ = (ϕrf,1 + ϕrf,2)/2 and Φ− = (ϕrf,1 − ϕrf,2)/2, respectively. �us, the resonant Rabi fre-
quency is modi�ed when using two orthogonal coils and depends on the phase di�erence
Φ−

Ω2(Φ
−) = 2Ωrf,0

���cos
(
Φ− ±

π

4

)��� (6.6)

Se�ing the phase di�erence to Φ−1 = π/4 and Φ−2 = −π/4 one selectively addresses
the F = 1 and F = 2 manifold, respectively (see Fig. 6.3). �is corresponds to le� and
right-handed rotating magnetic �elds.

In addition, the two linearly oscillating magnetic �elds do not have to be orthogonal to
switch o� the coupling in one manifold. Suppose the second rf coil produces a �eld along
the direction cos(θ )y + sin(θ )x instead of the y-direction, where θ denotes the deviation
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angle. In this case, one obtains for the Hamiltonian

Ĥ rot
rf =2~Ωrf,0 cos

(
Φ− ∓

θ

2 ±
π

4

)
[
cos

(
Φ+ ±

θ

2 ∓
π

4

)
Ŝx ∓ sin

(
Φ+ ±

θ

2 ∓
π

4

)
Ŝy

]
.

(6.7)

�us for non-orthogonal �elds the resonant Rabi frequency is given by

Ω2(Φ
−,θ ) = 2Ωrf,0

����cos
(
Φ− ∓

θ

2 ±
π

4

)���� (6.8)

�erefore, even for nonorthogonal �elds it is possible to selectively address a single
hyper�ne manifold. For example, to selectively couple the F = 1 manifold one sets
Φ−1 = π/4+θ/2. However, compared to the situation, where both rf �elds are orthogonal,
the Rabi frequency in F = 1 is reduced by a factor cos(θ ) ≤ 1.

One can think of this in the following way: A linearly oscillating �eld can always be
decomposed into two counterrotating �elds. �us, even for non-orthogonal linear �elds,
one can �nd a se�ing of their relative phase, such that one orientation of the rotating �elds
is out of phase by 180◦ and is therefore canceled. For orthogonal �elds, this corresponds
to the se�ing where the other orientation is in phase such that the two corotating �elds
add up. But for non-orthogonal �elds, they are not perfectly in phase and, thus, the Rabi
frequency is reduced.

On the experimental side, this means that the exact alignment of the two rf-coils is
not critical to induce hyper�ne selective spin rotations. In our experiment we also �nd
that the two linear magnetic �elds are not perfectly orthogonal but deviate by an angle
of θ = 10◦. �is is bigger than the geometric misalignment of the two coils and stems
from �eld inhomogeneities.

6.2.2. Phase imprints

To control the measurement basis we additionally use mw pulses to imprint arbitrary
phases on the magnetic substates. For this we exploit that, using the I/Q mixer, we can
control the phase of the mw pulses by tuning the phase of the two rf-�elds that are mixed
with the mw �eld. For example, to change the phase of the state (1, 0), we employ two
mw π -pulses coupling the states (1, 0) ↔ (2, 0) with a relative phase di�erence of ϕmw.
Such a sequence does not change the population of the state but will imprint the relative
phase ϕmw on the state (1, 0) and will thereby advance the spinor phase by ϕ′S = ϕS+ϕmw.

Since the mapping of the transversal spin direction for the readout is already deter-
mined by the phase of the rf pulse we do not need to control the Larmor phase of the state
with this method. �us, we use this phase imprint here only to tune the spinor phase.
�is technique is an alternative to the dynamical phase imprint via the second-order
Zeeman shi� and has the advantage that it is much faster than the dynamical imprint,
which helps to reduce technical �uctuations on the �nal readout.
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Transfer to Mapping of Mapping of

mw mwmw rf rf

Figure 6.4.: Readout sequence for the simultaneous readout of all three spin di-
rections: �e upper row depicts the coupling between the two hyper�ne
manifolds while the lower boxes contain the rotation operators together with
the employed rotation angle. In our experiment the whole sequence takes
about 370µs.

6.3. Simultaneous readout of all spin directions

A simultaneous readout of multiple observables is especially advantageous in situations
where one parameter, for example the Larmor phase, cannot be experimentally controlled.
�is can either be fundamental for example in the case of spontaneous symmetry breaking
or due to some experimental imperfection. In these cases it is not possible to prepare
exactly the same state in each realization to analyze correlations between the di�erent
spin-1 observables.

In general, one can think of many alternative sequences to set a speci�c readout basis,
which enables the simultaneous extraction of the desired observables. In the following,
we will present two di�erent techniques to read out all three spin-directions in a single
experimental realization. With this, each realization can be plo�ed as a point on a spin
sphere providing an illustrative representation of the generated state.

�e �rst readout sequence is sketched in Fig. 6.4. We �rst use three mw π/2-pulses
coupling the states (1,k) ↔ (2,k) with k ∈ {0,±1}. �is splits the state between the
F = 1 and F = 2 manifold. A selective π/2 spin rotation in F = 1 around the Sy axis
maps the spin observable Ŝx onto the population di�erence of (1,±1). We then use a π/4
spin-rotation around the Sx axis in F = 2 to map the observables Ŝy as well as Ŝz onto the
populations in F = 2. �is is possible because the rotation in the F = 2 manifold couples
more magnetic substates. �is provides access to additional spin-1 observables.

�e total unitary operator that describes this readout sequence is given by

Û = e−i
π
4 Ŝ

F=2
x · ei

π
2 Ŝy · e−i

π
2 Ĉ

00
y · e−i

π
2 Ĉ
+1+1
y · e−i

π
2 Ĉ
−1−1
y . (6.9)
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Expressing the �nal projective measurement in the F = 1 and F = 2 manifolds in terms
of the original spin-1 operators yields the following POVM elements:

N̂ ′1,−1 =
1
6 N̂ −

1
4 Ŝx +

1
8V̂x −

1
16Q̂zz+ f̂0

N̂ ′1,0 =
1
6 N̂ −

1
4V̂x +

1
8Q̂zz+ f̂1

N̂ ′1,+1 =
1
6 N̂ +

1
4 Ŝx +

1
8V̂x −

1
16Q̂zz+ f̂2

N̂ ′2,+2 =
5
64 N̂ +

1
16

√
3
2 Ŝy +

1
8
√

2
Ŝz +

√
3

32 Q̂yz −
1
32V̂x +

3
128Q̂zz+ f̂3

N̂ ′2,+1 =
5
48 N̂ +

1
8

√
3
2 Ŝy −

1
16V̂x −

1
16Q̂zz+ f̂4

N̂ ′2,0 =
13
96 N̂ −

√
3

16 Q̂yz +
3
16V̂x +

5
64Q̂zz+ f̂5

N̂ ′2,−1 =
5
48 N̂ −

1
8

√
3
2 Ŝy −

1
16V̂x −

1
16Q̂zz+ f̂6

N̂ ′2,−2 =
5
64 N̂ −

1
16

√
3
2 Ŝy −

1
8
√

2
Ŝz +

√
3

32 Q̂yz −
1
32V̂x +

3
128Q̂zz+ f̂7,

(6.10)

where N̂ ′F ,mF
= U †N̂F ,mFU . �e relevant spin observables, which we aim to extract, are

highlighted in red. Here, f̂i summarize all operators that contain â2,j (â
†
2,j) in linear and

second order. �us the operators f̂i contain the contributions from the initially unoccu-
pied F = 2 manifold. �e observables of interest are obtained via a linear combination of
the di�erent N̂F ,mF . For example, Ŝx is extracted via 2(N̂1,+1 − N̂1,−1) = Ŝx + 2( f̂2 − f̂0).

Strictly speaking, the measurement operators in Eq. (6.10) form no POVM because they
contain the additional operators f̂j and are orthogonal. �is is not surprising since these
measurement operators correspond a�er all to a projective measurement in a higher di-
mensional Hilbert space. Because the magnetic substates in F = 2 are initially unoccupied
the mean 〈 f̂i〉Q vanishes and thus the expectation values of these measurement operators
corresponds to the one of the respective POVM. �us, we can estimate the mean of Sx by
evaluating the measured population di�erence 2(N1,+1−N1,−1). In this sense, one calls the
readout sequence presented here an implementation of POVM but in a strict sense there
exists nor direct experimental implementation of a POVM. �is part is o�en neglected in
the discussion of POVMs, since they are mostly described in the context of single-particle
states, where one is just interested in the mean of the observables. However, the terms
f̂j will become important later when analyzing higher moments of the spin observables
for the analysis of many-body states.

6.3.1. Spin wave

To demonstrate the capabilities of this scheme to spatially resolve a complex spin struc-
ture we prepare a spin wave in a spatially extended BEC. A�er evaporation we load the
BEC of ≈ 40, 000 atoms into the elongated waveguide potential with trapping frequen-
cies (ω‖,ω⊥) = 2π · (2.3, 170)Hz. In this trapping con�guration the atomic cloud has a
spatial extension on the order of ∼ 300µm. Initially, all atoms occupy the state (1,−1).
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Figure 6.5.: Absorption image of the atomic densities measured in the two hyper-
�ne manifolds: From the measured densities in the F = 1 manifold (blue)
we extract the spin observable Sx . �e other two spin directions are encoded
in the densities of the F = 2 manifold.

An rf π/2 rotation around Sy then rotates the initial spin in z-direction into a spatially
homogeneous spin with Sx (y)/n(y) = −1. We subsequently apply a constant current
through rf coil (1) to generate a magnetic �eld gradient along the longitudinal direction
of the cloud with ∂Bz/∂y ≈ 0.2µG/µm. �is leads to a spatially varying evolution of the
Larmor phase. We employ this gradient for about 100 ms and with that generate a spin
wave with the spin vector rotating in the S⊥ plane of the spin sphere. In a last step we
use another rf pulse to tilt the spin wave out of the S⊥ plane by an angle of π/4. With
this sequence we generate a spin wave involving all three spin directions. �is spin wave
corresponds to a classical coherent state such that the mean spin values are su�cient to
fully describe the state and additional noise contributions due to the coupling to empty
modes can be neglected.

A�er this preparation we employ the readout sequence detailed above to extract all
three spin directions in a single experimental realization. �e resulting absorption image
a�er Stern-Gerlach separation is shown in Fig. 6.5. �e local value of the three spin
directions is then extracted from the measured atom numbers via

nSx1 (y) =n1,+1(y) − n1,−1(y)

n
Sy
2 (y) =

4
√

6
(n2,+1(y) − n2,−1(y))

nSz2 (y) =
√

2 [2n2,+2(y) − n2,+1(y)

+ n2,−1(y) − 2n2,−2(y)],

(6.11)

wherenF ,m(y) is the local atom number in the evaluation interval ofδy ≈ 5µm in the state
(F ,mF). On the le� hand side we introduced the notation nSiF where the subscript reminds
us, in which hyper�ne manifold the linear combination is read out and the superscript Si
encodes the spin direction that is contained in this combination of atom numbers. We use
this notation to keep in mind that we are “only” evaluating combinations of the measured
atom numbers which comprises information about the speci�c spin direction of the state.
By normalizing these linear combination to the local atom number in the respective
manifold we can estimate 〈nSiF (y)/nF (y)〉 = 〈Ŝi(y)/n̂(y)〉Q. Note that the combinations nSiF
correspond to the local operators Ŝi/2. But, since we normalize them to the atom numbers
in the respective manifold with nF = n/2, the factor of 2 cancels. �is normalization has
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Figure 6.6.: Spin wave evaluation: From the measured densities as shown in Fig. 6.5
we estimate the value of the three spin directions according to Eq. (6.11). We
�nd for all three spin directions an oscillatory behavior as expected for the
prepared spin wave. Plo�ing the spin values as a three dimensional vector for
each evaluation interval y we recover the generated spin wave. Alternatively,
we can plot these vectors inside a spin sphere, where we neglect the spatial
coordinate. From this plot we can directly infer the orientation of the spin
wave as indicated by the gray plane.

the advantage that it also gives the correct result for di�erent spli�ing ratios between
the two manifolds.

Here, we use in each evaluation region about 700 particles to estimate the mean of the
corresponding observable. �e result is shown in Fig. 6.6. From this measurement we are
able to reconstruct the three dimensional spin vector in each evaluation interval and the
result is consistent with the initially generated spin wave.

6.3.2. Readout with conventional projective measurements

We have shown that using our new readout technique it is possible to extract all three
spin directions and with that resolve the structure of the prepared spin wave. �e ques-
tion is whether we could have achieved the same result by using three measurements
employing a standard projective measurement sequence. By se�ing in each realization a
di�erent readout basis one could also extract all three spin observables. However, since
the preparation of the spin wave takes about 100 ms a�er the �rst rf pulse, the Larmor
phase is completely randomized a�er this time due to magnetic �eld �uctuations. �at
means that the spatial pa�ern as observed in Fig. 6.5 would be randomly shi�ed in each
realization. �erefore, it is impossible to extract the correlations between the observables
with the standard readout technique, even though the state we analyze is merely a single-
particle state. As seen before, 100 ms is about the minimal time scale for spin-mixing
dynamics. �us, our readout makes it possible to analyze correlations between orthog-
onal spin directions that arise during such interactions even a�er long evolution times
which has been studied in [22, 131].
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6.3.3. Calibration of the readout

In order to read out the observable Sx in F = 1 and Sy in F = 2 the relative phases of
the mw and rf pulses have to be controlled. As explained before, the rf phase determines
which transversal spin projection in the S⊥-plane is read out. To be a bit more precise it is
the di�erence between the Larmor phase of the state in the respective hyper�ne manifold
ϕF=1,2

L and the corresponding rf phaseϕF=1,2
rf , which determines the observable S⊥(ϕFL−ϕ

F
rf).

In principle the �rst rf pulse for the preparation of the spin wave sets the phase reference
for the subsequent rf pulses. However, this initial phase is randomized due to magnetic
�eld �uctuations. We therefore de�ne for the �rst readout pulse ϕF=1

L −ϕF=1
rf = 0 and per

de�nition we get
nSx1 (y) = n1,+1(y) − n1,−1(y). (6.12)

�e spin direction that is read out in F = 2 consequently depends on the phase di�erence
∆ϕL = ϕF=1

L − ϕF=2
L of the states as well as the phase di�erence of the two rf pulses

∆ϕrf = ϕ
F=1
rf − ϕ

F=2
rf .

�e Larmor phase di�erence between the states in F = 1 and F = 2 evolves dynamically
with the �rst-order Zeeman e�ect ∆ϕL(tL) = (д1,1 − д1,2)B/h · tL ≈ 2д1,1B/h · tL, where
tL denotes the time between the mw pulses and the �nal rf readout pulse in F = 2.
Additionally, we can experimentally imprint a phase di�erence by changing the relative
phases of the mw pulses that couple the two hyper�ne manifolds. As usual, the �rst
mw pulse acts as a phase reference for all subsequent pulses. In our case, the �rst mw
pulse couples the states (1,−1) ↔ (2,−1). By changing the relative phase ϕL,mw between
this pulse and the one coupling the state (1, 1) ↔ (2, 1) this phase is imprinted as an
additional phase di�erence between the two states, i.e. ∆ϕL = ϕL,mw.

Experimentally the time tL ≈ 200µs is �xed by the length of the mw pulses. At this
time scale the e�ect of magnetic �eld �uctuations are negligible. We then could control
the observable that is read out in F = 2 either by tuning the phase di�erence of the mw
pulses ϕL,mw or alternatively of the rf pulses ∆ϕrf. In our case, we use the rf phase ϕF=2

rf
of the second rf pulse as a control parameter.

While the rf-phase determines the spin direction that is read out in the S⊥ plane, the
�nal readout also depends on the spinor phase ϕF=2

S . As explained before a change of
the spinor phase by π/2 would alter the readout from S⊥ to Q⊥. Similar to the Larmor
phase we can control this by tuning the relative phase between the pulses coupling
(1,±1) ↔ (2,±1) and (1, 0) ↔ (2, 0), i.e. ∆ϕF=2

S = ϕ00
mw−(ϕ

11
mw+ϕ

-1-1
mw )/2 which is analogous

to the de�nition of the spinor phase. Experimentally, we keep the phases ϕ11
mw and ϕ−1−1

mw
�xed and control the spinor phase via the phase ϕ00

mw.

To ensure that we read out the correct observables in the experiment we use a calibra-
tion measurement to determine the two phases ϕ00

mw and ϕF=2
rf such that we extract the

observable Sy from the measured densities in F = 2. �is is done via two measurement
involving two types of spin waves. For the �rst measurement, we prepare a spin wave
in the S⊥-plane as described before omi�ing the last tilting pulse. For the second mea-
surement we prepare a spin wave in plane parallel to the S⊥-plane with a �nite value of
Sz/N = 0.9. �is is done by using a shorter rf pulse at the beginning of the spin-wave
preparation.
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Figure 6.7.: Calibration of spin readout: a) For the calibration we prepare two spin
waves with constant 〈nSz2 /n2〉 = 0 (upper panel) and 〈nSz2 /n2〉 = 0.9 (lower
panel). We �t the signal extracted from a single absorption image in F = 1
(blue symbols) and F = 2 (green symbols) with a sine to extract their relative
spatial phases and amplitudes AF . b) We plot the extracted of the amplitude
ratios as a function of ϕ00

mw. For the spin wave with 〈nSz2 /n2〉 = 0 we can
extract ϕ00

mw,0 from the point where the amplitude ratio is 1. c) Repeating the
measurement for �xed ϕ00

mw and varying ϕF=2
rf we extract the value ϕF=2

rf,π/2 at
which the two signals have a relative spatial phase shi� of π/2. While for
the spin wave, with 〈Sz〉 = 0, this value is constant, for the second spin wave,
it depends linearly on ϕ00

mw. Applying a linear �t to both results (gray solid
lines) yields the value of ϕ00

mw,0 = 0.06π at the crossing point. �is provides a
stronger constraint on this parameter than the method used in b).
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In each measurement, we employ the readout sequence detailed above and record the
population di�erences

nSx1 (y) =n1,+1(y) − n1,−1(y)

nF⊥2 (y) =
4
√

6
(n2,+1(y) − n2,−1(y))

nSz2 (y) =
√

2 [2n2,+2(y) − n2,+1(y)

+ n2,−1(y) − 2n2,−2(y)].

(6.13)

�e goal of the calibration is that nF⊥2 contains information about the spin observable Sy ,
i.e. that we tune ϕ00

mw and ϕrf,2 such that F⊥(ϕ00
mw,ϕ

F=2
rf ) = Sy , where F⊥ is de�ned as in

Eq. (5.19).
We start the discussion with the spin wave prepared in the S⊥-plane. A�er the prepa-

ration we systematically tune the two phases ϕ00
mw and ϕF=2

rf . For an exemplary plot of
the experimental signal see upper panel of Fig. 6.7a). As expected for the preparation
sequence we measure for Sz a constant value with 〈nSz2 /n2〉 ≈ 0. nSx1 (y) as well as nF⊥2 (y)
are oscillating as a function of the position y. Both signal are ��ed with a sine function
to extract their amplitudes AF=1/2 and relative phases. Varying the rf phase ϕF=2

rf shi�s
the spatial phase between the two signals. From this we extract the rf phase ϕF=2

rf,π/2 at
which the two signals have a spatial phase di�erence of π/2. If the spinor phase were
correctly adjusted, this would correspond to measuring two orthogonal spin directions
in F = 1 and F = 2 and we could identify F⊥ = Sy .

However, as explained before, changing the phase of the mw pulse ϕ00
mw will change the

spinor phase ϕF=2
S of the state in F = 2. �is will change the readout in this manifold from

a spin observable Ŝ⊥ to a quadrupole operator in the Q̂⊥ plane. Since for the prepared
spin wave the mean of these quadrupole operators is zero, a change of the mw phase will
in�uence the amplitude of the signal in F = 2 according to AF=2 = | cos(ϕ00

mw − ϕ
00
mw,0)|.

�is is shown in Fig. 6.7b). �us, by scanning the phase of the mw and recording the
amplitude, we can extract the phase ϕ00

mw,0 at which the amplitude is 1 and we therefore
measure a spin operator in F = 2. In our case, we �nd a value of ϕ00

mw,0 = 0.06π .
As a consistency check we analyze the second spin wave where we �nd 〈nSz2 /n2〉 = 0.9

as expected from the preparation sequence (see lower panel of Fig. 6.7). Again we �nd
an oscillating signal for nSx1 (y) and nF⊥2 (y) but with a lower amplitude corresponding to a
�nite value of Sz . Again, we �t both signals to extract the amplitude and relative phase of
both oscillations. By scanning the phase of the rf pulse we extract ϕF=2

rf,π/2 for each se�ing
of the mw phase. For this spin wave, however, the mean of the quadrupole operators
is not zero but 〈Ŝ⊥(ϕL)〉Q ≈ 〈Q̂⊥(ϕL + π/2)〉Q (see �eory 2.1.5). �erefore, scanning
the phase of the mw pulse will not change the amplitude as before (see Fig. 6.7b)) but
the phase ϕF=2

rf,π/2. In this se�ing, the phase ϕF=2
rf,π/2 depends linearly on ϕ00

mw as shown in
Fig. 6.7c). From this signal we extract ϕ00

mw,0 from the point at which ϕF=2
rf,π/2 has the same

value as in the measurement of the other spin wave. Because of the linear dependence
this puts a tighter constraint on ϕ00

mw,0 and we consistently �nd a value ϕ00
mw,0 = 0.06π .

Using these two kind of spin waves for calibration has an additional advantage. If
one just uses a single spin wave with 〈Sz〉 = 0 care has to be taken that it has full spin
length, i.e. 〈Ŝ⊥,max〉Q = 1. Since the evolution under the magnetic �eld gradient takes
about 100 ms, the spinor phase will also dynamically evolve. �us, one has to adjust the
timings such that the �nal state has a transversal spin length of 1. If, however, the spin
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length is reduced, i.e. AF=1 < 1, then the condition AF=1 = AF=2 is ambiguous and one
needs the second kind of spin wave to �nd the correct se�ing of the mw phase.

6.3.4. Technical error contributions to this readout

In the following, we will go into more detail discussing the e�ect of technical �uctuations
on this speci�c readout scheme. Within the calibration measurement we �nd two main
contributions that in�uence the readout: the length of the rf-pulse, or more precisely its
deviation from a π/4 pulse, and residual couplings of the selective F = 1 rf pulses to the
F = 2 manifold. For the calibration measurement these contributions do not in�uence
the extraction of the correct phase se�ings, but it is important to understand their e�ect
if one wants to use this readout sequence for precision measurements. We will discuss
the e�ect of these misalignments for the spin wave with �nite 〈Ŝz/n〉Q ≈ 0.9.

From the preparation sequence we would expect to �nd a spatially constant value
of 〈nSz2 /n2〉 = 0.88 irrespective of the mw and rf phase. Experimentally, however, we
observe that this value is not constant but instead depends on the rf phase ϕF=2

rf as shown
in Fig. 6.8a) for two examples of the rf phase. Similarly, we expect for the prepared spin
wave that the spatial variation of nF⊥2 /n2 is centered around 0. �us, averaging this signal
over the spatial extension of the condensate and over many experimental realization we
should obtain a mean value of 〈nF⊥2 /n2〉 = 0. Experimentally, we �nd that the center
of this spatial oscillation also shi�s as we vary ϕF=2

rf (see Fig. 6.8a)). �us, the average
〈nF⊥2 /n2〉 also depends on the phase of the second rf pulse. Both e�ects do not depend on
the phase of the mw pulse.

To analyze this further we extract the mean of 〈nSz2 /n2〉 and 〈nF⊥2 /n2〉 as a function
of ϕF=2

rf which is plo�ed in Fig. 6.8b). Both signals resemble an oscillatory behavior as a
function of ϕF=2

rf where we sampled half of the period. �us, we �t both curves with a
sine function to extract the o�set and the amplitude of this oscillation. Using a numerical
simulation we �nd that the o�set and amplitude have two di�erent origins which will
be presented in the following.

As a source for the o�set we identify a wrong pulse time for the �nal rf pulse. For the
π/4-rotation we use a pulse with a time of trf = 17.25µs which corresponds to an assumed
resonant Rabi frequency of Ωrf,0 = 2π · 7.25 kHz. However, we theoretically �nd that
the measured o�set depends linearly on the true Rabi frequency and our experimental
results are consistent with a Rabi frequency of Ωrf = 2π ·7.51 kHz (see Fig. 6.8c)). �us, the
assumed Rabi frequency or more precisely the pulse time is wrong by about 4% leading
to a shi� of the measured 〈nSzz /n2〉rf and 〈nF⊥2 /n2〉rf by 0.07 compared to the true value.
Because of this linear dependence the readout of Sz and F⊥ is very sensitive on the correct
se�ing of the pulse length .

As a reason for the oscillatory behavior we identify a small residual coupling in F = 2
of the �rst rf-pulse which should be selective to the F = 1 manifold. Via a numerical
simulation, as shown in Fig. 6.8c) we �nd that the experimental results are consistent
with a suppression of the Rabi coupling in F = 2 by a factor of γ ≈ 0.036 corresponding
to a residual Rabi frequency of γΩrf = 2π · 270 Hz. Since the rf frequency has been set to
resonance with F = 1, the Rabi is additionally detuned by 2π · 1.77 kHz. Because of this,
the population transfer in F = 2 for a pulse time of 34.5µs is negligible and amounts to
less than 0.3%. With the �nal rf-pulse, however, this small population gets mixed with a
macroscopic population of the other magnetic substates leading to interference which
results in a measurable signal. �at is the reason why this signal depends on the phase
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6.3. SIMULTANEOUS READOUT OF ALL SPIN DIRECTIONS

Figure 6.8.: E�ects of residual coupling andwrong pulse times: a) For the spin wave
with �nite 〈Ŝz/n〉Q ≈ 0.9 we �nd that the measured value of 〈nSz2 /n2〉 depends
on the phase of the second rf pulse, which is shown here for the two phase
se�ings ϕF=2

rf = 0 (le�) and ϕF=2
rf = π (right). Additionally the center of the

spatial oscillation ofnF⊥2 /n2 shi�s as we varyϕF=2
rf . Experimentally, we �nd no

dependence on the phase of the mw pulse. �e gray lines indicate the mean
values that are expected from the preparation sequence. b) To analyze this
e�ect we extract the mean of 〈nSz2 /n2〉 (blue points) and 〈nF⊥2 /n2〉 (red points)
as a function of ϕF=2

rf . �e two values have been averaged over the spatial
extension of the condensate as well as over many experimental realizations.
We �nd for both signals an oscillatory behavior and �t both curves with a sine
function (solid lines) to extract the o�set and amplitude of this oscillation. �e
gray lines correspond again to the expectation of the preparation sequence.
c) As the reason for the o�set we identify a wrong calibration of the �nal
rf pulse. For the π/4 spin rotation we have used a pulse duration of trf =
34.5µs assuming a resonant Rabi frequency of Ωrf,0 = 2π · 7.25 kHz. Using
a numerical simulation, we study the o�set of the two signals as a function
of the Rabi frequency assuming a �xed pulse time of trf = 34.5µs (blue and
red dashed lines). Comparing the simulation with the values extracted from
the �t in b) (light blue and red lines), we �nd that the experimental values
are consistent with a true Rabi frequency of about ≈ 7.5 kHz as indicated by
the dashed line. �us, the time of the employed rf pulse is wrong by about
4%. d) For the amplitude of the signal in b) we identify a residual coupling
γ of the �rst rf pulse in F = 1 to the F = 2 manifold. �e results of the
simulations are again shown as dashed lines while the extracted values from
b) are shown as solid lines, where the width indicates the 1 standard deviation
interval of the �t. Comparing the prediction with the experimental data we
�nd a suppression of the Rabi frequency in the F = 2 manifold by a factor of
γ ≈ 0.036 corresponding to a residual Rabi frequency of γΩrf = 2π · 270 Hz.
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mw mwrf mw mw rfmw

Figure 6.9.: Alternative sequence for the simultaneous readout of all three spin
directions.

of the second rf-pulse since this alters the interference from constructive to destructive.
Since the transferred population is so small, a residual coupling in F = 1 during the �nal
rf pulse in F = 2 is negligible.

6.4. Alternative readout sequence

As explained before, employing an rf pulse in F = 2 for the readout, requires controlling
the phase of the rf- as well as the mw-pulses. �is is a big advantage in cases where one
wants to read out the observable in F = 2 at di�erent spinor phases, because one just
needs to change the phase of the respective coupling pulse. �is is typically much faster
than other phase imprint methods and therefore shortens the whole readout sequence
which is bene�cial in terms of technical �uctuations. But in certain situations controlling
the phases of all the pulses can also be a source of technical noise and as we have seen
such a readout is also sensitive to misalignments of the rf pulse. �us, we present here a
di�erent readout sequence to extract all spin directions, where we restrict the rf-rotations
to the F = 1 manifold making the phase control of the mw-pulses obsolete.

�is readout sequence is sketched in Fig. 6.9. We �rst use two mw π/2 pulses coupling
the states (1,±1) ↔ (2,±1) which have been detuned from resonance by the Rabi fre-
quency. A π/2 rotation then transfers a quarter of the population in the corresponding
magnetic substates to the F = 2 manifold. With this we encode the information about
the observable Ŝz into these states. Next, we employ a π/2 spin-rotation in F = 1 around
Sy to map the spin Ŝx onto the population di�erence of (1,±1). We subsequently transfer
half of the population to the F = 2 manifold using three mw pulses coupling the states
(1, 0) ↔ (2, 0) and (1,±1) ↔ (1,±2), which additionally stores this spin information in
F = 2. A �nal π/2-spin rotation in F = 1 around Sx maps the third spin observable Ŝy
onto the population di�erence there. By adjusting the length of the mw pulses one can
adjust how many atoms are used for the estimation of the respective spin observables.
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With this sequence we extract all three spin observables via

nSx2 (y) = −
4
√

3
[n2,+2(y) − n2,−2(y)]

n
Sy
1 (y) =

4
√

3
[n1,+1(y) − n1,−1(y)]

nSz2 (y) = 4[n2,+1(y) − n2,−1(y)]. .

(6.14)

In this sequence we have to normalize the measured atom numbers to the total local
atom number n(y) = n1(y) + n2(y) in order to estimate the corresponding mean spin. In
Appendix B.1 we provide the evaluation for an arbitrary spli�ing ratio of the �rst two
mw pulses.

6.4.1. Spin wave with spinor evolution
We use this readout to analyze a di�erent kind of spin wave, which will provide an
instructive illustration of the spin dynamics under a spinor phase evolution as described
in Sec. 2.1.5. For that, we prepare a spin wave in the Sx − Sz-plane. We use the same
preparation sequence as before but the �nal rf pulse tilts the spin wave by π/2 out of the
S⊥-plane. A�er the preparation we use two mw π -pulses with a relative phase of ϕ00

mw
coupling the states (1, 0) ↔ (2, 0). As explained before this imprints a spinor phase of
ϕS = ϕ

00
mw onto the state. For the prepared spin wave, the value Sz/n varies in an interval

from −1 to 1. �us, we can experimentally extract the spinor phase evolution of spin
states with di�erent z-projections, which is shown in Fig. 6.10.

For a spin state with Sz/n = 0 a spinor phase evolution changes the spin length in the
S⊥-plane. In contrast, for Sz/n > 0.9 a change of the spinor phase keeps the spin length
�xed but changes its orientation similar to a change of the Larmor phase by ϕS. �is
means for the prepared spin wave that the mean spin length will shrink near the equator
of the spin sphere and will additionally twist with a higher z-projection. A�er changing
the spinor phase by π/2, the phase resembles an eight on the spin sphere. An additional
evolution of the spinor then unfolds the eight again and we retrieve the initially prepared
spin wave.

For the spinor phase of ϕS = 180◦ our readout does not detect S⊥,max/n = 1 as one
would expect for the prepared state. �is could again be due to some residual coupling
of the F = 2 manifold. Since a�er the �rst rf-pulse, we mix a possible small population
in the states (2,±2) with the high populations of the states (1,±1) inducing interference.
�is could then in�uence the readout of the S⊥ observables.

6.5. Detection of quantum correlations
So far we have used our new readout technique to analyze single-particle states. Even
though the states had a spatial structure, they were described by coherent states without
entanglement between the particles. �erefore, it was su�cient to analyze the mean
of the extracted observables where the additional Poissonian noise due to coupling to
initially empty states can be neglected. We will now extend this readout scheme to many-
particle states and show that despite the additional noise contribution this readout is
capable to detect quantum correlations in such states.
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Figure 6.10.: Spinor phase evolution of a spin wave: We plot the values of the three
spin observables extracted from the spatially resolved evaluation of 10 ex-
perimental realizations. For this we bin the spatial pro�les into evaluation
regions with a length of ≈ 2µm. With this we resolve the structure in spin
space due to a change of the spinor phase.
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Spin Echo and rotation 
back to original basis

Transfer to 

rf

Mapping of

Time

mw mw mw rf rf rf

Mapping ofPhase imprint

mw mw

Figure 6.11.: Pulse sequence for the simultaneous readout of Sx andQyz .

For generating a quantum correlated state we initialize around 20, 000 atoms in the
state (1, 0) and use spin-mixing to generate a spin-nematic squeezed state. As explained
before the initial dynamics are well described in a phase space spanned by the observables
Ŝx and Q̂yz . For the steering measurement we had to use tomography by scanning the
spinor phase to measure spin-nematic squeezing, i.e. the minimum �uctuations of the
observable F̂ (ϕS) = cos(ϕS)Ŝx + sin(ϕS)Q̂yz . �e idea here is to use the simultaneous
readout to extract Sx and Qyz from a single experimental realization. With this we could
analyze F̂ (ϕS) for all possible values of ϕS without the need for tomography. However,
since we are interested in higher moments of the probability distribution, the coupling to
the initially empty modes will now become relevant and introduce additional �uctuations.

To simultaneously readout these two observables we use the following readout se-
quence as sketched in Fig. 6.11. With an rf π/2 spin-rotation around the Sy-direction
we map the observable Ŝx onto the population di�erence of the states (1,±1). We then
use three mw π/2-pulses coupling the states (1, 0) ↔ (2, 0) and (1,±1) ↔ (2,±2) to
transfer half of the population to the F = 2 manifold. �us, the information about Ŝx is
encoded into the F = 2 manifold. In order to extract Q̂yz we �rst rotate the state back
using an additional rf π/2 spin-rotation around the y-axis in F = 1. At this stage a spin
echo sequence is used to cancel the e�ect of magnetic �eld �uctuations. We then imprint
a phase of π/2 on the state (1, 0) by applying two resonant mw π -pulses coupling the
states (1, 0) ↔ (2, 0) with a relative phase of π/2. An additional rf π/2-rotation then
maps the observable Q̂yz onto the population di�erence of (1,±1).

To extract the information about the observables Ŝx and Q̂yz we evaluate the atom
number di�erences

n−1 (y) = n1,+1(y) − n1,−1(y)

n−2 (y) = n2,+2(y) − n2,−2(y)
(6.15)

from which we obtain the correspondence 〈n−1 (y)/n1(y)〉 = 〈Q̂yz(y)〉Q and 〈n−2 (y)/n2(y)〉 =

〈Ŝx (y)〉Q. A�er Stern-Gerlach spli�ing all relevant densities for extracting n−1 and n−2 are
spatially non-overlapping since the magnetic moments of (2,±2) are twice as large as the
ones of (1,±1). �us, we extract all populations from a single exposure without the need
for hyper�ne selective absorption imaging which has the additional bene�t of reduced
imaging noise (see Fig. 6.12a)).

Using mw dressing we tune spin-mixing into resonance with the �rst excited mode of
the e�ective potential. As explained before, in order to extract the relevant observable
of this antisymmetric mode we divide the absorption image into two halves (L/R) and
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Figure 6.12.: Experimental evaluation: a) We tune the spin-mixing process into reso-
nance with the �rst excited spatial mode. Because of the di�erent magnetic
moments we can detect the relevant atomic densities with a single absorp-
tion image. b) Plo�ing the individual experimental results for the measured
pairs {N −,(1)1 /N1,N

−,(1)
2 /N2} reveals for the initial state a symmetric distri-

bution (le�). A�er 100 ms of spin-mixing evolution (right) we �nd a redis-
tribution of the initial �uctuations. �e blue and black lines depict the 2 s.d.
intervals of the two distributions.

extract in each half the corresponding atom number di�erence. With that the signal of
the �rst excited mode is extracted via

N −,(1)1 = n−,L1 − n
−,R
1

N −,(1)2 = n−,L2 − n
−,R
2 .

(6.16)

�is means, from every experimental realization we get a pair of measurement values
{N −,(1)1 /N1,N

−,(1)
2 /N2} which contains information about the correlations between the

two observables {Q̂yz, Ŝx }. By simply plo�ing the values extracted from around 300 ex-
perimental realizations we �nd without spin-mixing a symmetric distribution as shown
in Fig. 6.12b). �is is expected for the initial coherent state. A�er 100 ms of evolution
time we �nd that the �uctuations have been redistributed and the measured distribution
shows an elliptical shape. For the short axis we �nd that the �uctuations are reduced
compared to the initial state, which indicates the generation of a spin-nematic squeezed
state.

6.5.1. Surpassing the shot-noise limit

�e distribution we measured allows us to evaluate the variance of ∆2F (1)(φ) for every
value of the projection angle φ without the need to experimentally scan the spinor phase
ϕS. To show that the �uctuations are indeed squeezed it is not enough to compare them
to the initial state since there might be some additional technical �uctuations which,
for example, could have increased the width of the initial distribution. �us, to be more
quantitative we have to compare the �uctuations of the generated state with the shot-
noise limit of a coherent polar state. Similar as before, for each of the two atom number
di�erences, N −,(1)1 and N −,(1)2 , the shot-noise limit can be calculated assuming a multino-
mial distribution of the atoms. �is limit is given by the total atom numbers N1 and N2
in the respective manifold as the population of the states (1, 0) and (2, 0) a�er 100 ms is

97



6.5. DETECTION OF QUANTUM CORRELATIONS

Figure 6.13.: Spin-nematic squeezing: To verify squeezing of the two dimensional dis-
tribution we evaluate the variance for di�erent projection angles φ and
normalize it to the respective shot-noise limit (blue curve on the right). �e
blue shading represents the 1 s.d. band. We �nd minimal �uctuations of
0.62 ± 0.07 below the standard quantum limit (black dashed line) demon-
strating spin-nematic squeezing. �e red shading indicates the fundamental
limit of 0.5 for this readout scheme. �e gray points correspond to indepen-
dent imaging calibration measurements in the F = 1 and F = 2 manifold
using a coherent polar state.

still negligible. To quantify the �uctuations along the di�erent projection angles φ of the
measured distribution we evaluate the variance ∆2N −,(1)(φ) of

N −,(1)(φ) = cos(φ)N −,(1)2 + sin(φ)N −,(1)1 , (6.17)

which contains information about the observable F̂ (1)(ϕS)/2 as de�ned in Eq. (4.36). To
make the de�nitions consistent the spinor phase is then connected to the projection
angle via an o�set phase, i.e. φ = ϕS + ϕS,0. Since for a coherent polar state the measured
�uctuations in F = 1 and F = 2 are uncorrelated we get for the corresponding classical
limit

∆2N −CSS(φ) = cos2(φ)N2 + sin2(φ)N1. (6.18)

For perfect π/2 mw pulses, with N1 = N2 = N /2 this expression would be independent
of the angle φ. However, in our case we observe a slight imbalance of the atom numbers
consistent with 0.53π pulses. As shown in Fig. 6.13, a�er 100 ms of evolution time we infer
minimal �uctuations of 0.62 ± 0.07 clearly below the standard quantum limit, certifying
squeezing. For this value we subtracted independently characterized noise contributions
from the imaging (see Appendix A.3.2). Without subtraction we �nd a value 0.81 ± 0.07
which is still below the classical limit. We experimentally checked the classical limit by
analyzing in a separate measurement the �uctuations of a coherent polar state in F = 1
and F = 2. �e measured values are shown as gray points in Fig. 6.13.

�e squeezing by nearly a factor of 2 (-3 dB) is close to the fundamental limit that can
be detected with this readout technique. We have already encountered this limit for the
steering measurement when evaluating just one half of the atomic cloud. �e argument
in this case is the same. One can think of the mw pulses as beamspli�ers where one input
port, corresponding to the F = 2 manifold, is initially empty. �us, we get for the average
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〈N −,(1)(φ)〉 = 〈F̂ (1)(ϕS)/2〉Q. Assuming perfect π/2 mw pulses, corresponding to 50/50
beamspli�ers, the measured �uctuations of N −,(1)(φ) are connected to the �uctuations of
the observable F̂ (1)(ϕS) via

ζ (ϕ) =
∆2N −,(1)(φ)

∆2N −CSS(φ)
=

1
2
∆2F (1)(ϕS)

〈N 〉
+

1
2 . (6.19)

For details on the derivations of this formula see supplementary information in [123].
�us, even for vanishing �uctuations of the input state, the measurable suppression with
this readout is bounded by 0.5. From the measurement we infer minimal and maximal
�uctuations of ζ (φmin) = 0.62 ± 0.07 and ζ (φmax) = 2.80 ± 0.25. Using Eq. (6.19) we
compute the corresponding uncertainty product for the observable F̂ (1)(0,π/2) and obtain

∆2F (1)(0)
〈N 〉

·
∆2F (1)(π/2)
〈N 〉

= 0.24 · 4.6 = 1.1 ± 0.6, (6.20)

which is consistent with a minimal uncertainty state. As explained before the detection of
spin-nematic squeezing already certi�es that the atoms of the condensate are entangled.
�is means that our readout has the capability to detect quantum correlations. More-
over, compared to the steering measurement it does not su�er from a �nite step size for
sampling the spinor phase, since we can, with a single measurement se�ing, measure all
possible projection angles.

6.6. Applicability to other systems
It is important to note that this readout scheme is not limited to the system presented
here but can be applied to other systems that feature initially unpopulated states to
which one can couple for the readout. All the techniques used for this readout (projective
measurement and rf and mw manipulation) are readily available in many experimental
setups making an implementation of this readout feasible.

An interesting aspect would be the implementation of an informationally complete
measurement similar to [132]. �is could, for example, be realized in a pseudo-spin-1/2
system consisting of the states (1,+1) and (2,−1) which has been extensively studied in
our experimental setup [75, 76, 77, 78, 79]. �ere, only a total of 4 states are needed to
implement an informationally complete measurement. In this case, informational com-
pleteness refers to the single-particle basis. However, we have just shown that such a
measurement still contains information about the original quantum correlations in a
many-body state which we will also discuss in more detail later. For details on a infor-
mationally complete readout sequence in a pseudo-spin-1/2 system see Appendix B.3.
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7. Entanglement detection using a
simultaneous readout

By demonstrating squeezing we directly know that the spins in the condensate must be
entangled in a particle basis. Applying the same logic as for the steering measurement
this means that, a�er the expansion, spatially distinct regions of the condensate are
entangled. For the steering measurement we needed to experimentally scan the spinor
phase and acquire for each se�ing enough statistics in order to reveal the correlations
and anticorrelations in the two conjugate observables. With the new readout technique
presented before we would not need to scan this phase but could just acquire the required
statistics in a single measurement se�ing and then check in the post-analysis all possible
correlations between the di�erent measurement directions.

�e entangled states we prepare here have a relatively simple entanglement structure
in the sense that the spatial correlations and anticorrelations are in the same operator
basis, i.e. that the results FA(0) (FA(π/2)) in system A are (anti-)correlated with the re-
sults FB(0) (FB(π/2)) in system B. �is means that we can resolve these correlations by
se�ing the measurement basis globally. However, one could also think of more complex
states where for example the measurement result FA(0) in system A is correlated with
the measurement result of FB(π/2) in system B. �en, using standard projective measure-
ments one would need to set the measurement basis locally. Moreover, if one has no a
priori knowledge about the correlated measurement directions one has to try di�erent
combinations of basis se�ings which becomes experimentally infeasible as one includes
more and more spatial modes. Here, our readout o�ers the advantage that one could
check all possible correlations with a sinlge measurement se�ing, which would provide
an extremely useful tool for state characterization in multimode se�ings.

7.1. Entanglement measures based on uncertainty
relations

But can this readout technique actually verify entanglement between spatially distinct
regions? In Ch. 5 we showed that EPR steering provides a rather general method to verify
entanglement based on the measurement of two noncommuting observables. From a fun-
damental point of view, however, it is impossible to use a simultaneous measurement of
two conjugate observables to violate a steering inequality. Because a violation of this in-
equality means that we are able to guess the measurement results of two noncommuting
observables in one system be�er than predicted by the local uncertainty relation. �an-
tum mechanically, this is possible as long as we measure only one of these observables
in one experimental realization, because we could think of the measurement as in�u-
encing the global state. However in a simultaneous measurement this would mean, that
both observables are simultaneously be�er determined than allowed by the uncertainty
relation.
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Using the results from the squeezing measurement we can also plug in the numbers to
convince ourselves that it is indeed not possible to violate the steering inequality even for
an optimal se�ing of the squeezing measurement described in Sec. 6.5. Let us therefore
label the two halves of the cloud as A and B to connect the notation to the steering
measurement. We assume perfect π/2 pulses for the transfer to the F = 2 manifold such
thatN1 = N2 = N /2. �en we know that for an in�nitely squeezed state we could measure
a squeezing of ∆2N −,(1)(φmin)/〈N /2〉 = ∆2(N −A (φmin) −N

−
B (φmin))/〈N /2〉 = 0.5. Since we

only populated the �rst excited mode, we expect for the ground mode to measure classical
�uctuation, i.e. ∆2N −(φmax)/〈N /2〉 = ∆2(N −A (φmax) + N −B (φmax))/〈N /2〉 = 1. �us, we
get for the steering product

SA|B =
∆2N −A|B(φmin)

〈N /2〉 ·
∆2N −A|B(φmax)

〈N /2〉 = 0.5 · 1 = 0.5. (7.1)

We now have to compare this value to the uncertainty relation of the corresponding
operators in system A. As explained before the measured quantity N −A (φ) contains in-
formation about the observable F̂A(ϕS)/2. With this we would get for the uncertainty
relation with NA = N /2

∆2(FA(0)/2)
〈N /2〉 ·

∆2(FA(π/2)/2)
〈N /2〉 ≥

1
16 < SA|B. (7.2)

�us, even in the optimal case we would not violate the steering criterion as expected
from the argument given before.

7.1.1. Duan entanglement criterion

We recall that steering is already a strong form of entanglement and there might be other
witnesses for entanglement where the bound is easier to reach with this readout. One of
these witnesses that are based on the measurement of two noncommuting observables is
the Duan criterion [133]. Given two conjugate observables with ∆2FX(0)∆2FX(π/2) ≥ cX
(X ∈ {A,B}), we can rewrite the uncertainty relation in terms of the sum of the variances
by using that (x2 + y2)/2 ≥ xy, i.e.

∆2FX(0) + ∆2FX(π/2) ≥ 2
√
cX. (7.3)

Similar to steering we now use subsystem B to predict the measurement outcomes in A
by using an inference of the form

F̂A|B(0) = |a |F̂A(0) +
1
a
F̂B(0)

F̂A|B(π/2) = |a |F̂A(π/2) −
1
a
F̂B(π/2)

(7.4)

with some real number a. It can then be shown that for a separable state the sum of the
inferred variances is bounded by

D = ∆2(FA|B(0)/2) + ∆2(FA|B(π/2)/2) ≥
1
2 (a

2√cA +
1
a2
√
cB). (7.5)

102



CHAPTER 7. ENTANGLEMENT DETECTION USING A SIMULTANEOUS READOUT

�e idea behind the Duan criterion is that for two separable systems, A and B, the infer-
ence will not reduce the measurement uncertainty but will increase it according to the
uncertainty relation in each individual subsystem. Only if the two systems are entangled
can this inference submerge the bound for separable states. In contrast, for steering the
bound is given by the uncertainty relation in one subsystem alone and one has to show
that the inference reduces the uncertainty below even this bound. Consequently, showing
D < a2√cA/2 certi�es that A is steered by B [20].

For Gaussian states such as spin squeezed states, the Duan criterion is actually a nec-
essary and su�cient condition for entanglement. �us, using this criterion we should
be able to certify entanglement for the spin-nematic squeezed state. Assuming that
we divide the atomic signal into two halves containing equal atom numbers such that
√
cA =

√
cB = 〈N /2〉 we �nd for a = 1 that D/〈N /2〉 ≥ 1. Using the numbers from the

squeezing measurement as before we �nd

D

〈N /2〉 =
∆2N −A|B(φmin)

〈N /2〉 +
∆2N −A|B(φmax)

〈N /2〉 = 0.5 + 1 > 1. (7.6)

�erefore, with this measurement scheme we can also not violate this bound of the Duan
criterion.

7.1.2. Arthurs-Kelly uncertainty relation

�e reason that we cannot submerge the bound of the Duan criterion is that we have used
the uncertainty relation of the observables F̂ (ϕS)/2 as if we would have measured them
in a standard projective measurement. But in such a measurement we can in principle
measure each of the conjugate observables with arbitrary precision. In a simultaneous
readout, this is of course not possible since it would violate the uncertainty relation, so we
are only allowed to perform a fuzzy measurement as soon as we a�empt to simultaneously
measure two conjugate observables. �is increased variance is also the reason why the
measurable squeezing is bounded by 0.5. �erefore we need to derive an uncertainty
relation for the measurement operators N̂ −(φ) itself. In general, these operators can be
modeled as

N̂ −(0) = 1
2 F̂ (0) + Â

N̂ −(π/2) = 1
2 F̂ (π/2) + B̂

(7.7)

where we set φ = ϕS. �e additional operators Â and B̂ with 〈Â〉Q = 〈B̂〉Q = 0 ensure that
the measurement operators commute since we could measure the atom number di�er-
ences in principle with arbitrary precision. In our case, these two operators correspond
to the contributions from the initially empty F = 2 manifold. Using that [N̂ −F=1, N̂

−
F=2]

!
= 0

we obtain for the commutation relation of Â and B̂

[Â, B̂] = −
1
4 [F̂ (0), F̂ (π/2)] −

1
2 [Â, F̂ (π/2)] −

1
2 [F̂ (0), B̂]. (7.8)

�ese two operators introduce additional noise and therefore enable the simultaneous
measurement of the two noncommuting operators by making it less precise. In general,

103



7.1. ENTANGLEMENT MEASURES BASED ON UNCERTAINTY RELATIONS

it can be shown [37]

∆2N −(0)∆2N −(π/2) = 1
16∆

2F (0)∆2F (π/2) + 〈Â2〉Q〈B̂
2〉Q +

1
4∆

2F (π/2)〈Â2〉Q +
1
4∆

2F (0)〈B̂2〉Q

≥

(
1
4∆F (0)∆F (π/2) +

√
〈Â2〉Q〈B̂2〉Q

)2
.

(7.9)

For the last line, we used that

1
4∆

2F (π/2)〈Â2〉Q +
1
4∆

2F (0)〈B̂2〉Q ≥
1
2∆F (0)∆F (π/2)

√
〈Â2〉Q〈B̂2〉Q, (7.10)

i.e. that the arithmetic mean is bounded from below by the geometric mean. We estimate
the second term in Eq. (7.9) via the commutation relation (7.8)

〈Â2〉Q〈B̂
2〉Q ≥

1
4
��〈[Â, B̂]〉Q��2

=
1
4

����−1
4 〈[F̂ (0), F̂ (π/2)]〉Q −

1
2 〈[Â, F̂ (π/2)]〉Q −

1
2 〈[F̂ (0), B̂]〉Q

����2 . (7.11)

Since the operators Â and B̂ which describe the initially unoccupied modes are not cor-
related with the spin observables F̂ , the last two terms vanish and we obtain

〈Â2〉Q〈B̂
2〉Q ≥

1
4

����〈−1
4 [Ŝx , Q̂yz]〉Q

����2 = 1
4

(
〈N 〉

2

)2
. (7.12)

Inserting this result into Eq. (7.9), we arrive at the uncertainty relation of the two mea-
surement operators

∆2N −(0)
〈N /2〉

∆2N −(π/2)
〈N /2〉 ≥ 1 = 4 · ∆

2(F (0)/2)
〈N /2〉

∆2(F (π/2)/2)
〈N /2〉 . (7.13)

�is is the Arthurs-Kelly uncertainty relation [134] for the simultaneous readout of two
noncommuting observables. �us, the factor of four is the price one has to pay to simul-
taneously get information about two noncommuting observables.

With this uncertainty relation we can derive an entanglement criterion in analogy to
the Duan-criterion. �e main argument in the derivation of the Duan-criterion was that,
for a separable state, the sum of the inference variances are bounded from below by the
variances of the corresponding local observables [133]. �is argument can equivalently
be applied to the Arthurs-Kelly uncertainty relation and we obtain a modi�ed Duan-
criterion for the simultaneous readout of two conjugate observables

D = ∆2
(
N −A|B(0)

)
+ ∆2

(
N −A|B(π/2)

)
≥ a2√cA +

1
a2
√
cB

a=1
= 2 · 〈N /2〉.

(7.14)

Here the bound on the right hand side is increased by a factor of two. Inserting the
numbers for spin-nematic squeezed state we �nd that an optimal measurement could
indeed reveal entanglement between the two subsystems.
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Figure 7.1.: Noise analysis of the readout sequence: We evaluate the variance of the
population di�erences without relative analysis. �is corresponds to the
analysis of the ground mode. We evaluate the di�erent projection angles
in the same way as in Fig. 6.13 (blue curve). Since we �nd the same signal
for all evolution times we average over these realizations to increase the
statistics. We �nd that the �uctuations are determined by the excess noise in
the F = 1 and F = 2 manifold corresponding to projection angles φ = 0,π
and φ = π/2, 3π/2, respectively. We simulate the e�ect of magnetic �eld
�uctuations with (red line) and without (red do�ed line) additional noise on
the mw pulses. Relative shot-to-shot �uctuations on the Rabi frequency of
σmw = 0.8% together with magnetic �eld �uctuations of σB = 6.5µG repro-
duce the experimental signal.

7.1.3. Technical fluctuations

In principle, we could now apply this criterion directly to the experiment discussed in
Sec. 6.5 where we have found ∆2N −,1(φmin)/∆

2N −CSS(φmin) ≈ ∆2N −inf(0)/〈N /2〉 = 0.62.
Since we tuned the spin-mixing process selectively into resonance with the �rst excited
mode, we would expect to �nd shot-noise when evaluating the population di�erences
without the relative analysis, i.e. ∆2N −(φ)/∆2N −CSS(φ) = 1 ∀φ. �erefore, using the modi-
�ed Duan criterion we should in principle be able to directly verify entanglement between
the di�erent halves of the atomic cloud. In the experiment, however, we �nd that the
variance ∆2N −(φ) is not independent of the projection angle and especially we �nd at
φmin + π/2 increased �uctuations corresponding to about 5 times the shot-noise limit.

Analyzing the variance as a function of the projection angle we �nd for all evolution
times the same signal as shown in Fig. 7.1, even for the initial state. We obtain maximal
�uctuation at φ = 0 corresponding to the measurement in the F = 1 manifold with
∆2N −1 /〈N1〉 = 18. Even the minimal measured �uctuations at φ = π/2 are a factor of
2 higher than the shot-noise limit. �ese correspond to the measurement in the F = 2
manifold. Since these noise contributions stay the same irrespective of the evolution time
we suspect technical noise as the cause for the enhanced �uctuations. �is also �ts to the
observation that the noise in the F = 1 manifold is even higher as more readout pulses
are involved for the mapping in F = 1. �e analysis of the �rst excited mode cancels these
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contributions since they are homogeneous over the atomic cloud. �at is the reason why
we can detect squeezing despite technical �uctuations.

Let us now examine the reason for these �uctuations more thoroughly. In the F = 2
manifold, the noise can either be caused by �uctuations of the rf pulse for the spin rotation
or by �uctuations of the mw pulses for the population transfer. �e initial polar state
is very resilient to power �uctuations of the rf pulse since any rotation angle yields an
equal probability to measure a particle in one of the states (2,±2). We, thus, identify
power �uctuations on the mw pulses as the main contribution for the increased noise.
We �nd that the experimentally observed signal is consistent with relative shot-to-shot
�uctuations of the mw Rabi frequency of σmw = ∆Ωmw/Ωmw = 0.8%. �is is consistent
with the value we �nd from an independent characterization of the mw pulses (see
Appendix A.5).

Using a simulation of the readout sequence we identify magnetic �eld �uctuations
as the main reason for the enhanced noise in F = 1, even though the magnetic �eld is
already stabilized to a very high degree. But it turns out that our readout sequence is also
extremely sensitive to these �uctuations. �is is because a�er the �rst rf π/2 rotation
for the mapping of Ŝx we need another π/2 rotation with the same phase to turn the
state back in order to imprint the spinor phase in the next step. If the two phases are
not the same then we would change the orientation of the state on the spin-nematic
sphere. We theoretically check how a �uctuating phase between these two pulses would
a�ect the �nal readout. Neglecting the spin echo pulse and the mw pulses, the unitary
transformation for the readout including these phase �uctuations δϕ is given by

Û = e−i
π
2 Ŝy

Phase imprint︷   ︸︸   ︷
e−i

π
2 Q̂0/2 e−i

π
2 (cos(δϕ)Ŝy+sin(δϕ)Ŝx )e−i

π
2 Ŝy . (7.15)

Evaluating N −,(0)1 = N1,+1 − N1,−1 corresponds to a measurement of the spin observable
Ŝz . �us, to understand the e�ect of such phase �uctuations we calculate

〈Û †ŜzÛ 〉Exp = cos(2δϕ)Qyz + sin (2δϕ)Q0 ≈ Qyz + 2δϕ · N1,0. (7.16)

�us, if the phases of the rf pulses do not match we mix into the readout of Qyz contri-
butions from the observable Q0, which corresponds to the number of atoms in the state
(1, 0). Since within the undepleted pump approximation N1,0 ≈ N1, the �uctuations of
the population di�erence are increased by

∆2N −1 /〈N1〉 = ∆2Qyz/〈N1〉 + 4〈N1,0〉
2∆2(δϕ)/〈N1〉

≈ 1 + 4〈N1〉∆
2(δϕ).

(7.17)

In the measurement we measure in F = 1 a particle number of 〈N1〉 ≈ 10, 000 atoms. With
this the excess �uctuations of ≈ 18 can be explained by a �uctuating phase with variance
∆2(δϕ) = 4.3 · 10−4. For the timings of the readout sequence this value corresponds to
magnetic �eld �uctuations with a standard deviation of σB = 6.5µG. For the readout we
already employ a spin-echo sequence to reduce the e�ect of shot-to-shot �uctuations
of the magnetic �eld which would be on the order of 50µG. But even the tiny residual
�uctuations are enough to increase the noise of the readout by a sizable amount.
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mw mwmw rf rf

Figure 7.2.: Alternative readout sequence for the simultaneous extraction of Ŝx
and Q̂yz .

7.1.4. Stability of the mw transfers
Here, we shortly discuss how to improve the stability of the mw transfers which cause
the enhanced �uctuations in the F = 2 manifold. In terms of stability π/2 pulses are
not optimal for transferring half of the population because at this point the cosine that
parameterizes the transfer has the highest slope. �erefore, the transferred fraction will
be very sensitive on the mw power.

To minimize the e�ect of power �uctuations, it is be�er to use π pulses as there the
transferred fraction is very insensitive on small �uctuations of the Rabi frequency Ωmw.
One can then adjust the transferred fraction with the detuning δmw of the pulse via

ηπ =
n2,j

n1,k
=

Ω2
mw

Ω2
mw + δ

2
mw
. (7.18)

For example, transferring half of the atoms would correspond to se�ing the detuning
δ = Ω.

However, in situations where the relative phase of the states in the F = 2 manifold is
important resonant π/2 pulses are preferable for the state transfer. �is is important for
readout sequences that involve another spin rotation in F = 2 a�er the transfer.

7.1.5. Alternative readout sequence for Ŝx and Q̂yz

Even if we can mitigate the technical noise contributions in the F = 2 manifold, the large
�uctuations in the F = 1 manifold would still make the detection of entanglement impos-
sible. �us, we either have to further improve the stability of our magnetic �eld which is
already at a very high level or alternatively switch to a di�erent readout sequence which
is less sensitive to these kind of �uctuations. �e sensitivity of the previous sequence is
due to the backrotation of the state. �us, we could mitigate the e�ect of magnetic �eld
�uctuations by applying a spin rotation in the F = 2 manifold and imprint the spinor
phase during the mw spli�ing as shown in Sec. 6.3.3 for the calibration of the spin wave
readout.

Speci�cally, we could �rst use three mw π/2 pulses to transfer half of the population
to the states (2, 0) and (2,±1). �ere, we tune the phase of the mw pulses such that the
pulse coupling the states (1, 0) ↔ (2, 0) has a π/2 phase shi� compared to the other two
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Figure 7.3.: Comparison between old and new readout sequence for the simulta-
neous extraction of Sx andQyz : In the le� plot the detectable minimal and
maximal �uctuations a�er a given spin-mixing evolution time are shown,
which are the same for both readout techniques. Comparing, however, the
in�uence of magnetic �eld �uctuations σB on the measurement in F = 1
(middle) and relative �uctuations of the mw Rabi frequency σmw for the mea-
surement in F = 2 (right), we see that the new readout sequence proposed
here is less sensitive to these e�ects.

pulses. �is imprints a spinor phase of π/2 onto the state (2, 0). We then use an rf π/2
rotation in F = 1 around Sy to map the spin observable Ŝx onto the population di�erence
of (1,±1). A second π/2 rotation in F = 2 with the same relative phase, i.e. around SF=2

y

then maps the observable Q̂yz onto the population di�erence of (2,±2) (see Fig. 7.2).
We use a truncated Wigner simulation to check that this sequence is still capable of

detecting squeezing as shown in Fig 7.3. Indeed, the simulation shows no di�erence in
the squeezing signal between the two readout sequences. Additionally, we check the sen-
sitivity on the di�erent noise contributions mentioned before and �nd that this sequence
is rather insensitive to magnetic �eld �uctuations as well as power �uctuations of the
mw pulses. �e la�er is due to the additional rotation in F = 2 a�er the spli�ing, which
averages over possible imbalances caused by the mw transfer. �is readout is, thus, a
promising candidate for the detection of entanglement between di�erent spatial regions.
Additionally, the π/2 rotation in F = 2 maps the observable Q̂0 onto the population of
the state (2, 0). �us, with this sequence we could completely represent the state on the
spin-nematic sphere.

To use this readout one has of course to do a calibration measurement to determine
once the relative phases of the readout pulses. As we have seen for the readout of the spin
wave, such a sequence is also sensitive to residual couplings between the two hyper�ne
manifolds. But with a careful alignment of the setup one should be able to suppress the
technical �uctuations su�ciently to detect quantum correlations.
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7.2. Alternative entanglement detection schemes

So far we have just discussed entanglement witnesses based on the measurement of two
conjugate observables. Since most witnesses are only a su�cient but not a necessary
condition for entanglement, they might not be optimal in all cases. For example the Duan
criterion is not violated for all non-Gaussian entangled states. �erefore, we will here
outline a possible alternative route to detect entanglement via the measurement in two
mutually unbiased bases [135].

7.2.1. Simultaneous measurement in two mutually unbiased
bases

Given a Hilbert space of dimension d with two orthonormal basis sets {|αi〉} and {|βi〉},
then these bases are called mutually unbiased if��〈αi |βj〉��2 = 1

d
∀i, j ∈ {1, . . . ,d}. (7.19)

�e idea behind such bases is that the measurement in one basis yields no information
about the measurement result in the other basis given two consecutive measurement on
the sample [136]. For example, Suppose one has measured a particle in the �rst basis a�er
which the it is in the state |αi〉, then for a subsequent measurement in the second basis
one has an equal probability of 1/d to measure the particle in one of the states {|βi〉}, i.e.
one has no prior knowledge about the measurement outcome in the second basis.

It has been shown theoretically [135, 137] as well as experimentally [138] that mea-
surements in two mutually unbiased bases are su�cient to detect entanglement as well
as quantifying its dimensionality [139]. From an intuitive point of view, this makes sense,
because each measurement basis reveals information about the state that has not been
contained in the other measurement basis. �erefore, a clever choice of the two mea-
surement bases might result in very powerful entanglement criteria. �e de�nition of
mutually unbiased bases is also in close analogy to the de�nition of symmetric informa-
tionally complete POVMs (6.3), where the underlying idea is somewhat similar.

In our case, we do not have access to the individual particles of the condensate. �us,
we use for the de�nition of a mutually unbiased basis the single-particle spin-1 basis.
It is important to note that the concept of mutual unbiased bases is di�erent from a
measurement of conjugate observables. Take for example the measurement bases of the
conjugate observables Ŝz and Ŝx . Suppose the �rst measurement is performed in the Ŝz
basis, where the basis states are the magnetic substates. �ere, one detects a particle in
the state (1, 1). To measure a�erwards in the Ŝx basis one has to implement a π/2-spin
rotation, a�er which the probabilities to �nd a particle in a speci�c substate are not equal,
but there is a higher probability of 0.5 to measure it in the state (1, 0)) compared to 0.25
in each of the states (1,±1). �us, the measurement bases of two conjugate observables
are in general not mutually unbiased.

While there is a lot of theoretical work for constructing and determining the number
of mutually unbiased bases, one particular useful transformation to obtain a mutually
unbiased basis is the quantum Fourier transform. Given a d-dimensional orthonormal
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rfmw mw mw mwrf

Figure 7.4.: Experimental sequence for the quantum Fourier transform.

basis {|0〉 , . . . , |d − 1〉}, the quantum Fourier transform of each state is de�ned as [34]

|j〉 −→
1
√
d

d−1∑
k=0

ei2π/d ·jk |k〉 (7.20)

which is analogous to the discrete Fourier transform. For a spin-1 system the quantum
Fourier transform in matrix notation is given by

ˆFT = 1
√

3
©­«
1 1 1
1 ei2/3π e−i2/3π
1 e−i2/3π ei2/3π

ª®¬ . (7.21)

We see that independent of the initial state, the quantum Fourier transform leads to an
equal population of all three states and additionally to an equiangular distribution of the
phase in the complex plane.

7.2.2. Experimental implementation of the quantum Fourier
transform

In a spin-1/2 system the quantum Fourier transform corresponds to the Hadamard gate
which is routinely implemented for qubit quantum computation. Based on the implemen-
tation in qubit systems, there are di�erent proposals how to implement the quantum
Fourier transform in higher spin systems. It has been shown that it can always be im-
plemented using Hadamard and controlled phase gates [140]. Alternatively, there exist
proposal to employ spin-1/2 couplings in an extended manifold for the implementation
of the Fourier transform in qutrit systems [141]. �ese sequences are, however, not very
suitable for our system and would require multiple coupling pulses. We therefore propose
here a di�erent sequence which makes use of spin-1 rotations to e�ciently implement
the quantum Fourier transformation.

�e sequence is sketched in Fig. 7.4. We �rst employ a π spin rotation around the
axis (Sz + Sy)/

√
2, i.e by using an rf pulse that has a detuning equal to its Rabi frequency.

Starting in the states (1,±1) this generates a state with spin length of 1 in the S⊥-plane
but with di�erent phases than for a usual resonant π/2 rotation. �e state (1, 0) gets
transformed into a transverse polar state. In a next step we imprint a spinor phase of
π/2. While this transformation has no e�ect on the transverse polar state, it will remove
the spin length of the other two states and generate a state in the Q⊥-plane. For such
quadrupole states any subsequent spin rotation will maintain an equal population of the
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states (1,±1). A spin-rotation around Sx by an angle of θ = arctan(−1/
√

2) generates
an equal population of all three magnetic substates irrespective of the initial state. In a
last step, we imprint another spinor phase of π/2, which implements the correct relative
phases. For an implementation of this sequence the last step is not relevant since we are
anyway just interested in populations which are unchanged by the phase imprint.

To check that this sequence indeed provides an implementation of the quantum Fourier
transform we calculate the corresponding unitary operator which is given by

ÛQFT = e−iπ/2Q̂0/2 · e−iθŜx · e−iπ/2Q̂0/2 · e−iπ (Ŝy+Ŝx )/
√

2

= (â†1,+1, â
†
1,0, â

†
1,−1)

1
√

3
©­«

ei2/3π 1 e−i2/3π
1 1 1

e−i2/3π 1 ei2/3π
ª®¬ ©­«

â1,+1
â1,0
â1,−1

ª®¬
(7.22)

which is the quantum Fourier transform up to a global phase. If we want to combine
this with our simultaneous readout, we could �rst set a measurement basis in F = 1,
a�er which we transfer half of the population to the F = 2 manifold. �en we can use
this sequence described above to set the mutually unbiased basis, which would yield a
simultaneous readout in both bases.

Implementing these kind of measures will also require further theoretical work to
adapt them to continuous-variable systems. So far these entanglement measures have
been used for discrete systems where one counts certain measurement coincidences [138].
But for continuous-variables even with single particle resolution such a scheme is not
feasible. One idea to translate the results from discrete to continuous systems is to bin
the measurement results. However, one has to be careful since the binning can have an
in�uence on the mutual unbiasedness as well as the entanglement witnesses [142, 143,
144]. �e same di�culty applies to entropic entanglement criteria which have also been
shown to outperform entanglement witnesses based on variance analysis [145].
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8. State characterization using a
simultaneous readout

In this chapter we will provide further insights into the connection between the mea-
surement results from a simultaneous readout and the quantum state that is read out. We
have seen in Fig. 6.12b) that simply plo�ing the data obtained from single realizations
already captures the redistribution of �uctuations, which is typical for a squeezed state,
and that we can relate the measured �uctuations back to the �uctuations of a correspond-
ing projective measurement. It turns out that the results of the simultaneous readout
indeed yield an experimentally accessible representation of the quantum state and as
such provides an alternative to the standard tomographic strategies to reconstruct the
Wigner distribution. In this regard, we will show that a simultaneous readout of two
conjugate observables corresponds to a direct sampling of the corresponding Husimi
distribution. Simultaneous readout techniques have also been studied in photonic sys-
tems and we will provide a short summary of the results obtained there, namely that
a simultaneous readout is in many cases more e�cient for extracting higher moments
of a given quantum state compared to standard projective measurements. Finally, we
will employ our readout technique to record the quantum dynamics on the spin-nematic
phase space under spin-mixing evolution beyond the initial squeezing. �is allows us to
directly detect how the squeezed state transform into a non-Gaussian state and how the
distribution refocuses a�er one cycle of spin-mixing. In the multimode se�ing, we also
�nd indications of spin relaxation towards the minimum of the mean-�eld energy.

8.1. Connection between the simultaneous readout
and the Husimi function

Let us here shortly summarize two main characteristics of the simultaneous readout when
measuring a squeezed state. From Eq. (6.19) we know that the noise suppression that we
can measure is bounded by 0.5. Additionally, the Arthurs-Kelly relation (Eq. (7.13)) states
that for minimal uncertainty states the variance in each direction is twice as large as for
the corresponding operators measured via a standard projective measurement. �ese two
statements sound very familiar, as similar ones apply for comparing the Wigner and the
Husimi distribution (see 2.4.3). For the Husimi function we also found that its marginals
are not exactly the one of the Wigner distribution but their variances are broadened, e.g.
for a coherent state by a factor of 2. Similarly, the width of the Husimi distribution for
an in�nitely squeezed state is bounded by 0.5.

�is is not a coincidence as it turns out that a simultaneous measurement of two
noncommuting observables with equal precision yields the Husimi function to the corre-
sponding Wigner distribution [146, 147, 148]. �is can be seen by calculating the quan-
tum mechanical characteristic function for the two measurement operators introduce in

113



8.1. CONNECTION BETWEEN THE SIMULTANEOUS READOUT AND THE HUSIMI
FUNCTION

Eq. (7.7) normalized to the atom number in the respective manifold

χQ(k1,k2) = 〈ei(k1N̂−1 /N1+k2N̂−2 /N2)〉Q (8.1)

Inserting the de�nition of the two operators and using the fact that each manifold contains
half of the total atom number one gets

χQ(k1,k2) =〈e
i
N (k1Ŝx+k2Q̂yz+2k1Â+2k2B̂)〉Q

=〈1 + i

N
(k1Ŝx + k2Q̂yz + Ĉ)

+
(i)2

2N 2 (k1Ŝx + k2Q̂yz + Ĉ)
2

+
(i)3

3!N 3 (k1Ŝx + k2Q̂yz + Ĉ)
3 . . . 〉Q

(8.2)

where we de�ned the operator Ĉ = 2k1Â + 2k2B̂, which summarizes the contributions
from the initially empty modes in F = 2 with 〈Ĉ〉Q = 0. �ese empty modes and the
spin-1 observables are uncorrelated such that

〈(k1Ŝx + k2Q̂yz)
rĈs〉Q = 〈(k1Ŝx + k2Q̂yz)

r 〉Q〈Ĉ
s〉Q. (8.3)

Additionally, the �uctuations in the empty modes are Gaussian, i.e. [149]

〈Ĉs〉Q =

{
0 if s is odd
〈Ĉ2〉s/2Q (s − 1)!! s!

2s/2(s/2)! if s is even, (8.4)

where !! denotes the double factorial, which, in this case, is the product of all odd numbers
from 1 to s − 1. It can also be expressed in terms of factorials via [150]

(s − 1)!! = s!
2s/2(s/2)!

(8.5)

Inserting this into the characteristic function yields

χQ(k1,k2) =〈1 +
i

N
(k1Ŝx + k2Q̂yz)

−
1

2N 2 [(k1Ŝx + k2Q̂yz)
2 + 〈Ĉ2〉Q]

−
i

6N 3 [(k1Ŝx + k2Q̂yz)
3 + 3(k1Ŝx + k2Q̂yz)〈Ĉ

2〉Q]

+
1

24N 4 [(k1Ŝx + k2Q̂yz)
4 + 6(k1Ŝx + k2Q̂yz)

2〈Ĉ2〉Q + 3〈Ĉ2〉2Q] + . . . 〉Q.

(8.6)
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Sorting the terms by powers of 〈Ĉ2〉Q leads to

χQ(k1,k2) =〈1 [1 + i

N
(k1Ŝx + k2Q̂yz) −

1
2N 2 (k1Ŝx + k2Q̂yz)

2 + . . . ]

−
〈Ĉ2〉Q

2N 2 [1 + i

N
(k1Ŝx + k2Q̂yz) −

1
2N 2 (k1Ŝx + k2Q̂yz)

2 + . . . ]

+
1
2

(
〈Ĉ2〉Q

2N 2

)2

[. . . ] − . . . 〉Q

=〈e
i
N (k1Ŝx+k2Q̂yz )〉Q·e−〈Ĉ

2〉Q/(2N 2).

(8.7)

Using Eq. (6.19) we know that the �uctuations in the initially empty modes are given
by 〈Â2〉Q = 〈B̂

2〉Q = N /4. �us, we have 〈Ĉ2〉Q = N (k2
1 + k

2
2) and we �nally get for the

characteristic function

χQ(k1,k2) = 〈e
i
N (k1Ŝx+k2Q̂yz )〉Q · e−(k

2
1+k

2
2)/(2N ). (8.8)

�erefore, we obtain the characteristic function of the Wigner distribution times a Gaus-
sian �lter with a width of 1/

√
N , which is exactly the de�nition of the Husimi distribution.

In this measurement we spli�ed the populations equally between the two manifolds. In
general one can also use arbitrary spli�ing ratios which then lead to more general, so-
called squeezed Husimi distributions, where the Gaussian �lter is unisotropic [134, 148].

Since the Wigner and Husimi distributions are mostly discussed in quantum optics
they are usually restricted to two observables. In our case, we are able to extend the
simultaneous readout to more observables. For example the spin-mixing dynamics is
not only restricted to a single spin-nematic sphere but we could also include the mea-
surement of Ŝy and Q̂xz . In analogy, this should add more noise to the measurement
of each component but should still contain the full information of the quantum state.
�erefore, experimentally we can measure more general types of Husimi distributions
which are not restricted to two observables. In this sense, a Husimi distribution can be
viewed a representation of a quantum state in terms of measurement statistics which are
experimentally accessible via a simultaneous readout.

�us, one can either use standard projective measurements to sample the marginals
from the Wigner distribution and, a�er tomography, reconstruct the Wigner distribution.
Or, alternatively, one can use a simultaneous measurement of multiple observables to
directly sample the Husimi distribution, which contains also the complete information
about the quantum state. �e question now arises which one is be�er at determining a
given quantum state. As the Husimi function is a �ltered version of the Wigner function
this �ltering is in principle reversible. However, to get the correct quantum state one
needs a high measurement precision, as many quantum correlated states can look largely
like classical states in the Husimi distribution. �erefore it is important to measure the
high frequency components of the distribution, i.e. one has to measure with a very high
atom number resolution in order to identify the correct state [37]. However, also for a
precise reconstruction of the Wigner distribution out of a tomographic measurement,
one needs a high atom number resolution to capture the quantum features of certain
states. For example, to measure a cat state with standard projective measurements single-
particle resolution is required. While there exists no general answer which of the two
readout techniques is more e�cient, it has been shown that for many states the direct
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sampling of the Husimi distribution is more e�cient at extracting higher moments of
the Wigner distribution. We will summarize these results in the following.

8.2. E�icient detection of quantum state properties

In quantum optics the standard projective measurement corresponds to a homodyne
measurement, where the signal �eld is combined on a beamspli�er with a strong local
oscillator �eld of the same frequency. �e di�erence signal on the photodetectors then
contains a quadrature component of the signal beam. By tuning the phase of the local
oscillator one can then set the readout to the desired quadrature. �is is the optical
analog of a spin rotation followed by a projective measurement. For a simultaneous
readout of both quadratures heterodyne detection is used, where the signal �eld is mixed
with a local oscillator at a di�erent frequency. �e resulting beating signal then contains
information about the two conjugate quadratures [151]. In more recent experiments, one
also uses a spli�ing of the signal �eld analogous to our method combined with homodyne
measurements to simultaneously extract the two quadratures [152]. But such schemes
are sometimes still referred to as heterodyne measurements.

In this quantum optical framework, there have been theoretical [153] and experimental
studies [154] to assess which of the two methods is be�er for extracting certain proper-
ties of Gaussian states. In a two dimensional phase space the covariance matrix of the
Gaussian Wigner function is given by

GW = µ

(
1/λ 0
0 λ

)
(8.9)

where the axis of the phase space have been chosen to coincide with the principal axes
of this squeezed state and where the vacuum noise has been normalized to 1. Here,
λ corresponds to the squeezing parameter and µ is a phase independent noise contri-
bution with µ ≥ 1. In an ideal homodyne measurement one draws samples from the
marginals of this distribution, where the projection axis is parameterized by the unit
vector ®n = (cosφ, sinφ)T. �erefore a projective measurement samples a distribution
with a marginal variance

σ 2
φ = ®n

TGW®n. (8.10)

For a simultaneous readout we sample the corresponding Husimi distribution where
the covariance matrix of the Wigner distribution is enlarged by the vacuum noise

GH = GW + 12. (8.11)

Since we directly sample from the two-dimensional distribution the variance along a
certain projection is quanti�ed by the conditional variance

Σ2
φ = (®n

TG−1
H ®n)

−1. (8.12)

�is conditional variance takes into account that the simultaneous readout also extracts
information about the correlations of the two observables. If the additional noise in the
Husimi distribution was absent, the conditional variance would always be smaller than
the marginal variance and would only coincide along the principal axes of the elliptical
distribution. �is can be directly translated into the statement that the simultaneous
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Figure 8.1.: UncertaintiesWigner Vs. Husimi sampling: a) �e upper plot shows the
Wigner distribution W (x ,p) of a pure squeezed state. In a projective mea-
surement one tunes the projection angle φ and measures the corresponding
marginal distribution

∑
pW (x ,p) (lower plot). �e width of this distribution

is characterized by the marginal standard deviation σφ . In this case, the accu-
racy of the state estimation is quanti�ed by the average marginal variance
over all projection angles. b) �e upper plot depicts the corresponding Husimi
distributionH (x ,p) of the same squeezed state. In a simultaneous readout one
samples directly from the two-dimensional distribution, where the accuracy
of the state estimation is quanti�ed by the mean conditional variance Σ2

φ . �e
conditional variance corresponds to the width of the distribution for a �xed
value of e.g. p0 (lower plot).

readout would yield a more accurate estimator for the covariance matrix and with this
for the quantum state [153].

However, including the additional noise of the Husimi distribution, it is not obvious,
which method gives a more accurate estimate, i.e. whether the mean marginal variance
of the Wigner is smaller than the mean conditional variance of the enlarged Husimi
distribution (see Fig. 8.1). For a coherent state with µ = λ = 1 we get Σ2

φ = 2σ 2
φ . �us,

for a coherent state it is be�er to sample the distribution with a projective measurement.
In general, one can show that for all pure squeezed states (µ = 1) the mean marginal
variance of the Wigner distribution is smaller than the mean conditional variance of the
Husimi distribution [153], which means that a projective measurement in this case is
more e�cient to extract the quantum state. However, this changes rapidly as soon as
we add phase-independent noise to the state, i.e. µ > 1. �en the simultaneous readout
becomes more e�cient than a projective measurement of the state. If we take as an
example the spin-nematic squeezed state, �uctuations of qe� would lead to µ > 1 which
would render a simultaneous readout more accurate to determine the covariance matrix
of the state. Additionally, if one includes realistic detectors with e�ciencies less than 1,
then the simultaneous readout becomes also more e�cient (except close to the coherent
state), which has also been veri�ed experimentally [154].

�ese results have also been generalized to �rst and second moment estimations for
a wide range of states [155, 156]. �ere, it turns out that for the estimation of the �rst
moment a simultaneous readout always outperforms a projective measurement scheme,
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while their e�ciency is only equal for minimal uncertainty states. For the estimation
of the second-moment the analysis is more complex. But in most cases a simultaneous
readout turns out to be advantageous for the estimation of the second-moment, even for
non-Gaussian states such as Fock states.

8.3. Recording spin-mixing dynamics with a
simultaneous readout

As our simultaneous readout gives us a direct access to the Husimi distribution without
the need for state reconstruction, we can use it to follow directly the quantum dynamics
of the spin-mixing process beyond the initial squeezing. We can then directly compare
these results with the theoretical predictions given by the classical trajectories, which
were a good description for the truncated Wigner simulation as shown in Sec. 4.5.

8.3.1. Single Mode dynamics

At �rst, we restrict the dynamics to a single spatial mode by tuning the process selectively
into resonance with one mode of the e�ective potential. We use the same readout as for
the squeezing measurement which maps the observable Ŝx onto the population di�erence
N −2 in F = 2 and the observable Q̂yz onto the population di�erence in N −1 in the F = 1
hyper�ne manifold. In the upper part of Fig. 8.2 we show the long time dynamics of the
ground mode. Starting from the distribution of the initial polar state (which is slightly
distorted due to the technical �uctuations discussed before), the state follows the classical
trajectories as indicated by the separatrix. A�er 400 ms the state becomes clearly non-
Gaussian which we can resolve by just using around 150 experimental realizations, which
is much less than required for quantum state tomography and state reconstruction. A�er
600 ms the state is spread over the spin-nematic sphere, which we also observed for
the truncated Wigner simulation (see Fig. 4.3). We recall, that this spreading is caused
by the randomization of the Larmor phase. A�erwards the state refocuses again and
the cycle starts anew. �is is a manifestation of the coherent nature of the spin-mixing
process which has also been observed via coherent oscillations of the population in
the state (1,±1) [157]. But here, we observe these coherent oscillations directly for the
two-dimensional distribution.

We now tune the spin-mixing process into resonance with the �rst excited spatial
mode of the e�ective potential to check whether this mode also follows the mean-�eld
trajectories. For this mode we evaluate the relative atom number di�erence, i.e. N −,1F =

n−F ,L −n
−
F ,R in each manifold. �e result is shown in the lower part of Fig. 8.2. Similarly to

the dynamics in the ground mode we �nd that the state follows the classical trajectories.
Since the mode overlap reduces the strength of the coupling the dynamics are a bit slower
as the one in the ground mode. Additionally, we have to rescale the size of the phase
space. �is is because the spin-mixing process does not change the overall shape of the
condensate, meaning that even a�er long evolution times we do not observe that the
shape of the condensate transforms to the �rst excited spatial mode. �is would also
not be possible since the energy for such a process would be on a completely di�erent
level. �is in turn means that even at qe� = 0 the states (1,±1) cannot be populated by
all atoms but just by a fraction which is determined by the mode overlap. Similarly the
maximal transversal spin length will be restricted to this fraction. �us, we rescale the
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Figure 8.2.: Single mode dynamics of spin-mixing: For the upper part we tune the
spin-mixing process selectively into resonance with the ground mode. We
�nd that the initial state spreads along the classical trajectories of the phase
space. Using our readout technique we directly (without state reconstruction)
observe the emergence of a non-Gaussian state a�er 400 ms of evolution time
and the refocusing of the state a�er 700 ms. For the lower part we tuned spin-
mixing into resonance with the �rst excited spatial mode. We �nd that the
dynamics in this mode also follow the classical trajectories given the phase
space is scaled by the mode overlap between the condensate and the �rst
excited mode, which we take from Fig. 4.6.
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phase space by 0.65 which is the overlap we experimentally extracted in Fig. 4.6c). With
this argument we �nd that the dynamics are well described by the classical trajectories
and also feature coherent dynamics.

8.3.2. Corrections of phase imprint
For the dynamics shown in Fig. 8.2 we noticed that the phase imprint has not been
correctly set to π/2 but was slightly o� by about δ = 0.05π . �erefore, the readout in
F = 1 does not measure Q̂yz but

N −1 =
1
2 [cos(δ )Qyz + sin(δ )Sx ]. (8.13)

�is leads to a distortion of the measured distribution such that the distribution that has
spread over the spin-nematic phase space will not be symmetric if we divide the phase
space along the Ŝx − Q̂0-plane. Similarly, the outgoing state will have a di�erent angle to
this plane on one side than on the other. But since we also have measured the value of
Sx we can correct for that shi�, which leads to the distributions shown here.

8.3.3. Beyond single mode dynamics
To examine the dynamics beyond the single mode approximation we tune the dynamics
simultaneously into resonance with the two energetically lowest spatial modes of the
e�ective potential and use our mode selective readout to observe the dynamics of each
mode. �is is shown in Fig. 8.3. For short evolution times of 250 ms we �nd that the
ground mode follows the classical trajectories while the �rst excited mode clearly deviates
from the single-mode trajectory which could be caused by the competition of the two
modes. For longer evolution times the ground modes starts to deviate from the mean
�eld trajectories and a�er 700 ms we see no coherent evolution anymore but the ground
mode develops strong �uctuations along the Sx -direction. Even a�er an evolution time
of 2 s the distribution remains qualitatively unchanged.

�e large �uctuation along the Sx -direction indicates a relaxation of the state towards
a �nite transversal spin length which approximately corresponds to the minimum of the
mean �eld energy. �e large �uctuation would then come from a randomization of the
Larmor phase since we only measure one spin direction. In experiments in the waveg-
uide, we have already seen by simultaneously measuring Ŝx and Ŝy that the transversal
spin length relaxes during the spin-mixing dynamics to some �nite value [131]. �ere,
however, the spin-mixing dynamics involve many spatial modes while in our case only
two modes are initially in resonance. Still even in the XDT se�ing with the �nite energy
spacing of the spatial modes we �nd indications of a similar relaxation dynamics. To
�nally con�rm this we would need to measure also in this se�ing both directions of the
transversal spin. A truncated Wigner simulation with two competing modes in the states
(1,±1) is not capable of reproducing the observed result. �is points to some additional
interactions between the modes which are not included in the simulation. �is se�ing
might be interesting for a study at the onset of multimode dynamics.
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Figure 8.3.: Multimode dynamics of spin-mixing: We tune the spin-mixing process
simultaneously into resonance with the ground and the �rst excited spatial
mode. �e short-time dynamics up to 150 ms are still consistent with the
single-mode model. A�er 400 ms we observe no coherent dynamic and we
measure large �uctuations in the ground mode along the Sx direction. �is
distribution persists up to 2 s of evolution time.
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9. Outlook
In this thesis, we demonstrated that the local contact interactions in a BEC can be har-
nessed to generate entanglement between spatially separated regions. Starting with a
spin-nematic squeezed state in a single spatial mode, we showed that these correlations
are distributed in space by expanding the atomic cloud, which makes the entangled sub-
systems individually addressable. Demonstrating EPR steering between the di�erent
partitions of the atomic cloud certi�es that the prepared state can be used as a resource
in quantum information tasks. �is extends the application of spin-squeezed states be-
yond metrological tasks and demonstrates that entanglement between identical particles
provides indeed a useful resource for quantum information protocols.

Additionally, we have developed a new readout method which is based on coupling
the spin state to the initially unoccupied states of the F = 2 manifolds. Together with
selective spin rotations, this enables the readout of multiple spin-1 observables in a single
projective measurement of this extended Hilbert space. While the coupling to the F = 2
manifold introduces additional binomial �uctuations, we could demonstrate that the
readout is still capable of detecting quantum correlations. In principle, it is even possible
to verify entanglement between spatially separated regions using a simultaneous readout
scheme. In fact, the readout provides a complete description of the quantum state, since
it corresponds to a direct sampling of the Husimi function. �is o�ers an alternative to
the commonly employed tomographic procedures to reconstruct the Wigner distribution.
In the spatially extended system we have seen that this readout allows the extraction of
spatial correlations between multiple spin observables. �is is not only valuable for the
detection of entanglement but also provides a new tool to study many-body dynamics
far from equilibrium [22, 158]. Since the dynamics in these systems can be characterized
in terms of correlation functions, our readout technique opens up the possibility to study
correlations between orthogonal spin directions which turns out to be essential for the
many-many dynamics induced by spin-mixing [159, 131].

In the following, we will again focus on the quantum informational implications of
this works which provide the possibility of studying the generation of cluster states. In
this context, we lay out a possible roadmap for using BECs for quantum information
processing.

9.1. One-way quantum computation
So far, the implementation of quantum computation has been mainly concentrated around
the circuit model. �ere, the basic idea is straightforward: just replace the classical bits by
quantum mechanical two level system (qubits) and develop a universal set of elementary
operations (quantum gates) to implement computational algorithms [34] (see Fig. 9.1a)).
However, in contrast to classical bits, which can only have the values 0 and 1, qubits can
also be in an arbitrary superposition of these two states, requiring a very high precision
for the control of the qubit state. Moreover, a universal set of gates includes an entangling
operation between an arbitrary pair of qubits. So far, the maximum number of qubits
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1 2

3

4

5

Figure 9.1.: Circuit vs. measurement based quantum computation: a) In a circuit
based quantum computer one uses single qubits as input states. Using a com-
plete set of one- (blue boxes) and entangling two-qubit (green lines) gates
makes it possible to implement arbitrary unitary transformations which en-
able universal quantum computing. A �nal measurement in the computa-
tional basis yields the result of the quantum computation. b) In a measure-
ment based quantum computer one initially prepares a highly entangled state,
a so-called cluster state which is represented by a graph. �is state is usually
prepared via two-body interactions between the subsystems (1-5) as indicated
by the green lines. �e graph shown here realizes the same computation as
the circuit shown in a). In this scheme, computation is performed by manip-
ulations of single subsystems and subsequent readout which has then to be
forwarded to set the unitary transformation in the following subsystem.

that are fully controlled are limited to 20 [160], which is far below the number required
to surpass classical computers. �us, the question is still unresolved whether the circuit
model is scalable [161].

An alternative route is provided via the concept of one-way computation [21]. �ere,
prior to the computation, a highly entangled cluster state is generated, which is repre-
sented by a two-dimensional graph as shown in Fig. 9.1b) and which is tailored to the
speci�c algorithm one wants to implement [162]. Computation is then achieved by go-
ing in a speci�c order through the subsystems (represented by the nodes of the graph)
and implementing a local unitary transformation in each subsystem followed by a local
measurement. �e unitary operation on subsequent systems is conditioned on the mea-
surement results obtained in the previous ones. �e main advantage of this scheme is
that universal quantum computation can already be implemented with single qubit oper-
ations as the necessary entanglement structure is already contained in the initial cluster
state (green lines in the graph). �is expands the possibility of quantum computation
to new systems where the preparation and control of large numbers of particles is well
studied but where the online generation of entanglement is usually hard to achieve such
as optical [72] and ultracold atomic systems [163, 164].

On top of that, one-way computation is not restricted to qubit systems but can also be
extended to continuous-variable systems, where each node contains many-particles [165,
17, 166]. With this, one can exploit the advantages of continuous-variable systems such
as unconditional entanglement generation. In optical systems, it has already been demon-
strated that it is possible to implement basic computational operations [167, 168, 169]
and to generate large cluster states with up to a million nodes [170, 171]. �e weak in-
teractions in photonic systems, however, limit the amount of entanglement that can be
generated and with this the possible structure of the cluster state. Moreover, photons
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cannot be stored which causes additional constraints on the implementation of quantum
computing.

In this respect, atomic systems o�er unique advantages as the they feature stronger
interactions than photonic systems and are routinely trapped with long coherence times.
While indications of cluster state correlations have already been observed with a BEC
trapped in an optical la�ice potential [163], the systematic study of these states has so far
been restricted to photonic systems. In the following, we will outline how the interatomic
interactions could be exploited for the generation of cluster states.

9.2. Cluster state generation
In fact, a state that features EPR steering is equivalent to a two-node cluster state [119].
One-way computation is built on these correlations which cause that a measurement on
given node steers the state of the subsequent nodes. By knowing the measurement result
and therefore the state, one can then adjust the subsequent measurements to implement
a speci�c algorithm on a given cluster state.

Before presenting two possible schemes for the generation of cluster states, we provide
more details about the de�nition of a cluster state and its correlations. In general, a
cluster state is represented by a graph which is determined by its edges (E) and vertices
(V ) [172]. �e hallmark of such a graph state is that the measurement results at a given
vertex in one observable, e.g. Ŝx , are correlated with the measurement results in the
conjugate basis Q̂yz of the connected vertices and similarly anticorrelated in the respective
conjugate observables. �us, strictly speaking, steering has di�erent correlations, but
for the bipartite state we can rede�ne the operator in one subsystem, e.g. B, such that
F̂B(ϕS) → F̂B(ϕS + π/2).

In general, the vertices of the cluster state form a genuinelym-partite entangled state
with correlations of the type [173, 174]

∆2
[
Fa(0) −

∑
k∈N(a)

Fk(π/2)
]
→ 0 ∀a ∈ V (9.1)

in the case of perfect correlations. Here,N(a) denotes all vertices connected to the given
vertexa. �erefore, the detection of a cluster state usually requires the ability to set locally
di�erent measurement bases. Here, the simultaneous readout developed before provides
a �rst check if such correlations are indeed present in an experimentally generated state.

9.2.1. La�ice potential
In our system we have the possibility to switch on a 1-dimensional la�ice potential (for
details see [78, 79]). �is allows us to load the atoms, for example, from the waveguide
potential into an array of wells, which we could treat as the nodes of a graph state (see
Fig. 9.2). To generate the links between these nodes, it has been shown that it is su�cient
to employ local squeezing together with beamspli�ing operations between the neigh-
boring wells [173]. In our case, this would mean to �rst use spin-mixing to generate a
squeezed state in each la�ice site and in a second step to lower the la�ice potential to
induce tunneling between neighboring sites, which realizes the beam-spli�ing operation.
In this situation, however, some sort of local control would be needed as the squeezing
ellipses of neighboring sites need to be oriented in orthogonal directions with respect
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Figure 9.2.: Generation of cluster states in a lattice potential: To generate a linear
cluster state we can load the BEC into 1D optical la�ice. Using spin-mixing in
each la�ice we generate a locally entangled state. By lowering the trapping
potential to enable tunneling, this entanglement spreads between the la�ice
sites which generates a linear cluster state.

to each other. Such schemes have already been demonstrated in optics for a �rst test of
quantum gates [174, 167, 168, 169]. �e experimental control over the spin-mixing inter-
actions has the additional advantage that one can apply the squeezing operation again
a�er the tunneling. �is additional squeezing operation should yield a more entangled
cluster state and therefore a be�er resource for quantum computation [173].

9.2.2. Multimode dynamics
It has been theoretically [175, 176] as well as experimentally [177] demonstrated that
also multi-mode dynamics provide ways to generate computationally useful cluster state
structures beyond linear graphs. In our se�ing, we can explore these possibilities by
tuning spin-mixing into resonance with multiple spatial modes of the e�ective potential
as shown in Fig. 9.3. A�er the expansion of the cloud we can then use the simultaneous
readout technique to test for cluster state correlations between di�erent spatial regions
of the expanded condensate. As shown before, the mode overlap in the e�ective potential
is experimentally well controlled. By tuning this parameter as well as qe� we can ex-
perimentally test di�erent se�ings for the reliable generation of cluster states. A�er the
expansion we additionally have the possibility to retrap the atoms in the optical la�ice
potential for further manipulations of the generated state.

9.3. Local control
While the simultaneous readout provides a powerful tool for testing correlations between
conjugate observables and �nding the correlated measurement bases, a local probing
and manipulation scheme is required to use a cluster-state for one-way computation.
Experimentally, we have already implemented a setup to locally control the spin-states
of the atoms using light-shi�s from a detuned laser (see [178]). With these light shi�s it
is possible to induce local spin rotations as well as tuning an atomic sample locally in and
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Figure 9.3.: Generation of cluster states via multimode dynamics: �e generation
of complex cluster states beyond linear chains usually requires multimode
dynamics. In our setup this can be realized by tuning the spin-mixing into
resonance with multiple external spatial modes. A�er expansion we can then
check the resulting correlations using the simultaneous readout technique.

out of resonance for mw-coupling. �is enables a local manipulation of the mw dressing
and therefore provides a local control of the spin-mixing interactions as well as of the
spinor phase evolution. �is provides nearly all operations for a universal set of gates for
one-way computation with Gaussian states [17]. However, for a complete set at least one
non-Gaussian interaction is required, i.e. which is described by a Hamiltonian that is at
least cubic in one operator. In quantum optics, this is usually achieved by using photon
counting instead of homodyne detection. In an atomic system, one could instead use the
interactions, for example, spin-mixing beyond the undepleted pump approximation which
also introduces a non-Gaussian operation. �erefore, ultracold atomic systems o�er new
possibilities for the study of quantum computation given the interatomic interactions
and the high level of control.
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A. Technical parameters and imaging
calibration

�is chapter provides characterization measurements of experimental components, such
as trapping frequencies and stability measurements of the magnetic �eld.

A.1. Trap frequencies
In this section the results of the trap frequency measurements are presented which we
use as a characterization of the trap geometries. For further details on the dipole beams
and the trapping potentials see [79]. �e dipole traps in the experiment are generated by
focused Gaussian laser beams. �us, we can change the trapping frequencies by tuning the
power of both beams, which we control via AOMs. �e power in each beam is stabilized by
diverting, directly a�er the optical �bers, a small fraction of the beam onto a photodiode
(PD) which we use as the input signal of a control loop. We then tune the power of the
beams by changing the set point of this control loop.

Longitudinal trap frequencies
To measure the trap frequency of the XDT, we employ the following sequence. �e
horizontal position of the XDT can be adjusted via a Piezo-controlled mirror. With this
we slightly displace the position of the XDT before loading the atoms from the magnetic
trap into the crossed dipole trap. A�er condensation we switch the position back to the
original one and record the longitudinal displacement δy of the condensate. By displacing
the condensate just by ≈ 2µm we ensure to stay in the quadratic regime of the optical
trap. �e oscillation frequency yields then directly the trapping frequency. �e upper
plot in Fig. A.1 shows the measured signal. In order to save time for taking the data but
still get a high precision on the frequency measurement, we sample a few oscillation
periods at the beginning and then again a�er 500 ms.

We measure the trap frequencies for four di�erent power se�ings on the photodiode.
For a Gaussian beam the trap frequency should be proportional to the square root of the
power which we use to �t the measured signal (see lower plot in Fig. A.1). From the �t
we extract the relation

ω‖ = 2π · 22.9 Hz
√

PD/V (A.1)

from which we read o� the longitudinal trapping frequencies for a given PD power of
the XDT.

Transversal trap frequencies
�e transversal trap frequency is mainly determined by the power of the waveguide,
whereas the power of the XDT has only a minor in�uence. Similar to before we measure
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Figure A.1.: Measurement of the longitudinal trap frequencies: We use a Piezo-
controlled mirror to switch the horizontal position of the XDT. A�erwards
we measure the oscillations of the BEC position (δy) in longitudinal direction
vs waiting time t . �e upper plot shows an example of the measurement sig-
nal. �e displacement of ≈ 2µm is su�ciently small to stay in the harmonic
part of the potential. In the measurement we just sample a few periods at
the beginning and then again a�er 500 ms to increase the precision of the
frequency measurement while reducing the amount of experimental realiza-
tions. �e dashed line is a �t to the data to extract the trapping frequency. In
the lower plot the extracted trapping frequencies for di�erent beam powers
as measured on the photodiode (PD) are shown. As the trap frequency is
proportional to the square root of the power, we �t the data with the corre-
sponding function. �is curve (dashed line) provides a reference to read o�
the trapping frequencies at a given PD power.

Figure A.2.: Measurement of transversal trap frequencies: A�er shortly switching
o� the waveguide, the atoms are recaptured and we record the oscillating
vertical position δz of the BEC. �e measurement shown here has been taken
for a measured power of the waveguide of 4 V and from the �t (dashed line)
we extract a transversal trap frequency of 286 Hz.
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Figure A.3.: Long-time measurement of the magnetic �eld: Using a Ramsey-type
sequence as described in the main text (Sec. 3.6) we measure the magnetic
�eld over many hours to characterize its stability. Over the course of 19
hours the magnetic �eld dri�ed by about 300µG (upper plot) which is mainly
caused by temperature changes in the electronics. In a standard measurement
protocol, we employ, in intervals of around one hour, a control measurement
to compensate this dri�. Evaluating the �uctuations of the magnetic �eld in
a one-hour time window (lower plot) yields a value of around σB ≈ 50µG.

this frequency via oscillations of the BEC in the harmonic potential. A�er evaporation
we shortly switch o� the waveguide for 500µs to let the atomic cloud fall under gravity
for a short distance. Subsequently, we recapture the atoms and record the oscillation of
its vertical position δz. An exemplary measurement for a power at the photodiode of 4 V
is shown in Fig. A.2. We again limit the amplitude of the oscillation to a few µm to stay
in the harmonic part of the potential. With such measurements we extract the following
values for the transversal trap frequencies

PD [V] ω⊥/2π [Hz]
2 170
3 221
4 286

�e error on the trap frequency measurements are typically on the order of a few Hz. For
the lowest trap frequency of 170 Hz we additionally �nd a reduced heating of the atomic
sample.

A.2. Stability of the magnetic field
To measure the stability of the magnetic �eld, we use a Ramsey-type sequence similar to
the control sequence as described in Sec. 3.6. For this measurement we set the magnetic
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�eld to 1.994 G. Starting from the state (1,−1) we employ a π/2 mw pulse coupling this
state to (2, 0) where we detuned the mw from resonance by 357 Hz. A�er τR = 700µs
of phase evolution time we use another π/2 mw pulse coupling these two states and
record in the end the population imbalance N −1,2/N = (N2,0 − N1,−1)/N . Neglecting the
phase evolution during the �rst mw pulse (with a duration of 37µs) one would expect
no imbalance in the case that the experimental magnetic �eld has no o�set from the set
value. Out of the imbalance we calculate the deviation of the real magnetic �eld via

δB = −
arcsin(N −1,2/N )

2πτR · д1,1
(A.2)

where д1,1 is the g-factor of the F = 1 hyper�ne manifold. We measured the magnetic
�eld over the course of 19 hours which is shown in Fig. A.3. During this measurement
the dri� in the magnetic �eld is compensated. Otherwise the magnetic �eld could dri�
out of the sensitivity region of this measurement. But by keeping track of these changes
we reconstruct together with the measured imbalances the magnetic �eld over the whole
course of the measurement. During this measurement we �nd a dri� of ≈ 300µG of the
magnetic �eld which is mainly caused by temperature changes.

In the experiment these dri�s are usually compensated by employing a control mea-
surement every hour. �us, we are interested in the remaining �uctuations in between the
control measurements. We therefore partition the measured signal in one-hour intervals
and determine in each the magnetic �uctuations as shown in the lower plot of Fig. A.3.
With this we �nd mean �uctuation of the magnetic �eld on the order of σB ≈ 50µG.

A.3. Imaging calibration

We use two di�erent imaging calibrations for the experiments described in Ch. � and
in Ch. 6, since, in between, we changed the optical path of the imaging light which can
a�ect the imaging parameters. As explained in the main text, the imaging calibration is
an essential part for measuring quantum correlations since a wrong calibration results
in �uctuations, that are for example lower than the standard quantum limit even for a
coherent spin state. Details of the imaging system and the derivation of the formulas
can be found in [82, 78]. As explained in the main text, in each experimental realization
we take multiple images where the �rst two are used to measure the absorption signal
of the atoms in F = 1 and F = 2. Additionally, we take two images without atoms as a
reference. Out of the measured photon numbers from the atomic signal Iatom and from
the reference image Iref, we extract the atom number in each pixel via

npx =

[
1
ccl

ln
(
Iatom
Iref

)
+ csat

Iatom − Iref
τL

]
·
d2

px

σ0
, (A.3)

where d2
px is the area of a pixel, σ0 is the sca�ering cross section and τL is the duration of

the imaging pulses. �is formula is basically the Beer-Lambert law (�rst term) including
saturation e�ects (second term). To experimentally calibrate the readout, we tune in the
post-analysis the two parameters ccl, which is connected to the imaging transition dipole
moment, and csat, which is connected to the saturation intensity of the imaging transition.
For the calibration of these two parameters we prepare a coherent spin state and exploit
the fact that, for a correct calibration, the measured variance should be given by the shot
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Figure A.4.: Imaging calibration for the steering measurement: A�er preparing a
coherent state involving the states (1,±1) we evaluate the �uctuations of
N −,(1) as a function of the mean atom number 〈N +〉. We �nd a slope of
1.0 ± 0.1 which is consistent with the value extracted from a measurement
in the optical la�ice.

noise limit. Since the measured variance also contains other noise contributions from
the imaging, we vary the number of atoms which, for a correct calibration, should then
give a linear dependence with slope 1. By going to higher atom numbers we can also
determine the technical �uctuations of the coupling pulses involved in the calibration
measurement as this would lead to a quadratic dependence.

Additionally, we systematically vary the imaging intensity. For lower intensities the
saturation term in Eq. A.3 becomes negligible which we use to determine the parameter
ccl. For high imaging intensities the main contribution to the measured atom number
comes from the saturation term which in turn is used to determine the value of csat. Ex-
perimentally, however, a higher imaging intensity also entails higher noise contributions
from the imaging, such as optical fringes. �e high noise can make a variance analysis
di�cult. Alternatively, we can also analyze the mean atom number. A�er having �xed
the value of ccl at low imaging intensities we adjust csat such that we measure for each
imaging intensity the same mean atom number at a �xed atom number se�ing. �is
analysis is much more resilient to additional imaging noise contributions.

A.3.1. Imaging calibration for steering measurement

To calibrate the imaging parameters for the steering measurement, we prepared the
condensate in an optical la�ice potential. �e la�ice depth has been set to a very high
value such that we get ≈ 35 independent BECs with atom numbers in the range from 100
to 700 atoms. �is preparation has the advantage that we can acquire higher statistics
for the same measurement time than by just generating a single condensate in each
experimental realization. For preparing the coherent state we employed a mw π/2 pulse
coupling the states (1,−1) ↔ (2, 0) to split the population between the two states. A
subsequent mw π/2 pulse transfers the population from (2, 0) to the state (1,+1). As in
the steering measurement we then evaluate the �uctuations ∆2N − of the atom number
di�erence N − = N1,+1 − N1,−1 and compare it to the shot-noise limit given by the mean
atom number 〈N +〉 = 〈N1,+1 + N1,−1〉. We tune the imaging parameters such that we
measure for each imaging intensity ∆2N − = 1 · 〈N +〉 + c with some �nite o�set c that
contains contributions from photon shot-noise and additional imaging noise.
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Figure A.5.: Results of the imaging calibration for the simultaneous readout: �e
le� and right panels show the atom number �uctuations vs the total atom
number measured in F = 1 and F = 2, respectively. �e dashed lines are
linear �ts to the data while the black lines are the theoretical expectation for
a coherent state without photon shot-noise contribution. �is plot has been
taken and adapted from [123]

As the trap geometry and the atom numbers are di�erent for the actual steering mea-
surement, we check the extracted imaging parameters by preparing a coherent state in
the crossed dipole trap. Starting from the state (1,−1) we use two mw pulses coupling
the states (1,−1) ↔ (2, 0) and (2, 0) ↔ (1, 0). For the second pulse we use a �xed π
pulse while we vary the length of the �rst pulse. Together with a magnetic �eld gradient
(Stern-Gerlach pulse) which expels residual atoms in the magnetic substatesmF , 0 we
adjust the total atom number N in the state (1, 0). Subsequently, an rf π/2-pulse is used to
prepare an equal superposition of the states (1,±1). To suppress technical �uctuations we
evaluate the �uctuations of N −,(1) = N −,L − N −,R. In this measurement, we consistently
�nd a slope of 1.0 ± 0.1 as shown in Fig. A.4.

A.3.2. Imaging calibration for simultaneous readout

�is part has been taken from the supplemental material in [123] and adapted to the
notation used in this thesis. To check the calibration of our imaging we prepare a coherent
spin state with approximately equal mean atom numbers in the states (1,±1) and (2,±2).
Starting from the state (1,−1) we use two mw pulses coupling the states (1,−1) ↔ (2, 0)
and (2, 0) ↔ (1, 0). For the second pulse we use a �xed π pulse while we vary the length of
the �rst pulse. Together with a magnetic �eld gradient (Stern-Gerlach pulse) which expels
residual atoms in the magnetic substatesmF , 0 we adjust the total atom number N in
the state (1, 0). Subsequently, an rf π/2-pulse is used to prepare an equal superposition
of the states (1,±1). �ese populations are then again split with two mw π/2 pulses
coupling the states (1,±1) ↔ (2,±2). �is preparation leads to an equal probability of
1/4 to �nd an atom in one of the four states.

Analogous to the squeezing measurement we divide the atomic signal into two halves
and extract the atom number di�erence N −,L/R

F = nL/R
F ,+F − n

L/R
F ,−F in each half and for each

manifold F = 1, 2. To mitigate the technical noise contribution we subtract the value of
the right half from the one of the le� to obtain N −,(1)F = N −,LF −N

−,R
F . For each se�ing of the

atom number we compute the variance ∆2N −,(1)F and plot it vs. the measured mean atom
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Figure A.6.: Buildup of correlations between the twohalves during expansion:We
varied the timing of the readout pulses with respect to the switching of the
XDT for expansion. Here, 0 ms delay corresponds to applying the readout
pulses 2 ms before switching o� the XDT to expand the atomic cloud. As
we employ an expansion time of 10 ms, a delay of the readout pulses by
12 ms corresponds to applying the pulses directly a�er the expansion and
shortly before the imaging. In the case where only the F = 2 manifold is
populated, we �nd a strong dependence on the timing of the pulses. In the
case where both manifolds are populated we �nd a small dependence for the
F = 2 manifold. For this measurement we employed a higher atom number
of ≈ 17.000 atoms. �us, we expect that for the squeezing measurement at
lower atom number the e�ect has already saturated, which is consistent with
the calibration measurement.

number 〈NF 〉 in the respective manifold as shown in Fig. A.5. For a coherent state one
expects to �nd multinomial �uctuations of the populations implying ∆2N −,(1)F = 〈NF 〉.

From a �t to the data we extract a slope of 1.02 ± 0.05 for F = 1 and a slope of
0.96 ± 0.08 for F = 2 which is consistent with coherent state �uctuations. For the o�set
we �nd 1, 710 ± 80 for F = 1 and 2, 090 ± 170 for F = 2. �ese values include the photon
shot noise contribution of 1, 150 for F = 1 and 1, 490 for F = 2 which we compute via
Gaussian error propagation from the number of detected photons.

A.3.3. Buildup of correlations during expansion

In the squeezing experiments we limit the atom number in each manifold to about 12.000
atoms in each manifold. �e reason for this is, that we �nd for higher atom numbers
reduced �uctuations in the F = 2 manifold even for a coherent state. Similarly, if we
a�empt an imaging calibration with a coherent state that just involves the states (2,±2),
we �nd values inconsistent with a calibration involving both manifolds. In contrast to
the steering measurement 5.2, where we employed the readout pulses a�er the expan-
sion, in the squeezing measurement 6.5 we applied all pulses 2 ms before switching o�
the XDT to expand the atomic cloud. �us, we suspect that for higher atom numbers
correlations between the two halves of the atomic cloud are built up during expansion
due to interactions.

To check this, we prepare a coherent polar state and vary the delay time of the readout
pulse, i.e. a π/2 spin rotation, with respect to the switching of the XDT for expansion (see
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Fig. A.6). �e minimal delay time of 0 ms corresponds to applying the readout pulses 2 ms
before switching o� the XDT to expand the atomic cloud. As we employ an expansion
time of 10 ms, the maximal delay time of 12 ms corresponds to applying the readout
pulses directly a�er the expansion and shortly before the imaging. We compare three
di�erent scenarios. In the �rst one, we use, a�er the rf pulse, two mw π/2 pulses coupling
the states (1,±1) ↔ (2,±2) to transfer half of the population to the F = 2 manifold. In
the second one, we do not apply any mw coupling such that only the states (1,±1) are
populated and for the last con�guration we use two mw π pulses to transfer the whole
population to the states (2,±2). �e mw pulses are always employed directly a�er the
rf pulse. We tuned the total atom number such that for all three se�ings the mean atom
number in each manifold is ≈ 17.000 atoms.

For the evaluation we use the same method as for the squeezing measurement and
evaluate the variance of ∆2N −,(1)F /〈NF 〉 in the respective manifold (see Fig.A.6) and sub-
tract the photon shot noise contribution. In the case, where just the F = 1 manifold is
populated we �nd no dependence of the measured �uctuations on the timing of the rf
pulse. If both manifolds are populated we �nd in F = 2 a small dependence on the timing.
If just the states (2,±2) are populated, then the measured �uctuations strongly depend on
the timing of the readout pulses. �is indicates that there are some interactions during
the expansion that lead to a correlation of the atom number di�erence n−2 between the
le� and right half of the atomic cloud. �is interaction seems to be modi�ed as soon as
atoms in the other manifold are present.

To analyze these correlations further, we systematically increase the evaluation region
starting symmetrically around the middle of the atomic cloud. For each region of size d
we extract the �uctuations of N −,(1)F (d) and normalize them to the corresponding mean
atom number in this region 〈NF (d)〉. �e results are shown in Fig. A.7. For all three cases,
we �nd longer correlation lengths when the readout pulses are applied directly before
the expansion. Consequently, when the pulses are applied near the end of the expansion,
the correlation length is reduced in both manifolds and we �nd that the normalized
�uctuations saturate as soon as the evaluation region exceeds a spatial extension of
40µm. �is is consistent with the classical correlation induced by the imaging that we
extracted before, since an evaluation region of sized = 40µm corresponds to the situation
where the two subsystems A and B each have a size of 20µm, which is the limit we used
for the steering measurement.

In the case that only the states (2,±2) are populated we �nd a large correlation length,
which explains why the imaging calibration just involving the F = 2 manifold yielded
an inconsistent result. For such a calibration we have to take care to apply the readout
pulses a�er the expansion. In the case where both manifolds are populated, the correlation
length in the F = 2 manifold is also enlarged but still much smaller than in the previous
case.

Since interaction e�ects depend on the density and thus on the total atom number,
we expect, that for lower atom numbers the e�ect is already saturated when analyzing
the whole cloud. Otherwise, we would have seen this e�ect in the imaging calibration.
�us, the result of the squeezing measurement is una�ected by this measurement, but
one should be careful when evaluating smaller regions of the atomic cloud.
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Figure A.7.: Correlation lengths a�er expansion: We systematically increase the eval-
uation region starting symmetrically around the middle of the atomic cloud
(see inset in the le� down corner). In each region of size d we evaluate
∆2N −,(1)F /〈NF 〉. If the readout pulses are applied at the end of the expansion
(column on the right), we recover the classical correlations induced by the
imaging. In the case where only the states (2,±2) are populated we �nd a
long correlation length. �us, the interactions in F = 2 lead to considerable
spin-spin correlations during expansion which is modi�ed as soon as also
atoms in F = 1 are present.

A.4. Technical stability of the rf pulse

To assess the technical stability of the rf pulse we load the BEC in an optical la�ice
potential similar to the imaging calibration measurement mentioned before. A�er the
preparation we have again ≈ 35 independent BECs in the state (1,−1). We then apply
an rf π/2 pulse to generate a state with equal probability of p−1 = p+1 = 0.25 to mea-
sure a particle in each state (1,±1). Including technical �uctuations the variance of the
population di�erence N − between the two states is given by

∆2N − = 〈N +〉 + ∆2[N (p+1 − p−1)]

= 〈N +〉 + 〈N 〉2∆2[cos(Ωrf · tπ/2)] +

=0︷         ︸︸         ︷
〈p+1 − p−1〉

2 ∆2N

≈ 〈N +〉 + sin(Ωrf · tπ/2)︸          ︷︷          ︸
=1

t2
π/2∆

2Ωrf 4 〈N +〉2.
(A.4)
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Figure A.8.: Technical stability of the rf pulse: By combining di�erent la�ice sites for
the evaluation, we assess the variance of the population di�erence for up to
≈ 2, 500 atoms. We then �t a polynomial function up to second order (red
dashed line) to the data and extract a quadratic term of (2.87 ± 0.15) · 10−4.
For reference we include a line with slope 1 (black solid line).

�e �rst term are statistical �uctuations which are calculated from a multinomial distri-
bution. �e additional �uctuations can be divided in two terms; one term corresponds
to the variance of the total atom number. �is contribution, however, is negligible as
long as the mean populations in (1,±1) are approximately equal. Finally, we obtain the
technical noise contribution from the rf pulse which is proportional to the square of
the atom number. To extract this term we combine multiple la�ice sites to get higher
mean atom numbers. Together with the results from the single la�ice sites we obtain
the data shown in Fig. A.8. We �t a polynomial function up to second order to the data,
where we �xed the linear slope to one. Out of this �t we extract a quadratic prefactor of
(2.87 ± 0.15) · 10−4. For a pulse length of tπ/2 = 47µs, this corresponds to shot-to-shot
�uctuations of the rf Rabi frequency of ∆Ωrf = 2π · (29 ± 1)Hz or relative �uctuations of
σrf = ∆Ωrf/Ωrf = (0.54 ± 0.02)%.

A.5. Technical stability of the mw pulse
Similarly we determine the technical stability of the mw pulse that has been generated
with the I/Q mixer. Starting from the state (1,−1) we use a π/2 pulse coupling the states
(1,−1) ↔ (2, 0) directly followed by a π pulse coupling the states (2, 0) ↔ (1,+1) to
transfer half of the population to the state (1,+1). Neglecting the noise contribution from
the π pulse the variance of the population di�erence is given by

∆2N − = 〈N +〉 + t2
π/2∆

2Ωmw · 〈N
+〉2. (A.5)

�e second term di�ers by a factor of four from the one in Eq. (A.4). �is is because a�er
the preparation all atoms are in the states (1,±1) and as a consequence 〈N 〉 = 〈N +〉.
Analogously to the previous measurement we combine multiple wells and extract the
quadratic part of the �uctuations (see Fig.A.9). In this case, we �nd a value of (1.26 ±
0.08) · 10−4. For a pulse length of tπ/2 = 155µs, this corresponds to �uctuations of the
mw Rabi frequency of ∆Ωmw = 2π · (11.5 ± 0.4)Hz or relative �uctuations of σmw =
∆Ωmw/Ωmw = (0.72 ± 0.02)%.
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Figure A.9.: Technical stability of the mw pulse: By combining di�erent la�ice sites
for the evaluation, we assess the variance of the population di�erence for up
to ≈ 5, 000 atoms. We then �t a polynomial function up to second order (red
dashed line) to the data and extract a quadratic term of (1.26 ± 0.08) · 10−4.
For reference we include a line with slope 1 (black solid line).
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B. Simultaneous readout of
conjugate spin observables

Here, we provide further details to two readout sequences detailed in Ch. 6, namely for the
simultaneous extraction of all spin directions without spin rotations in F = 2 (see Sec. 6.4)
and for the proposed simultaneous readout of Ŝx and Q̂yz with an additional spin rotation
in the F = 2 manifold (see Sec. 7.1.5). In the end we give a possible informationally
complete readout sequence for a pseudo-spin-1/2 system.

B.1. Readout of all spin directions with arbitrary
spli�ing ratio

In the main text we described a sequence to simultaneously read out all three spin direc-
tions by using the F = 2 manifold as a kind of storage and just employ spin rotations in
the F = 1 manifold (see Sec.6.4). �ere, detuned π/2 pulses are used to initially transfer
a quarter of the population from the states (1,±1) to (2,±1). In the following we will
give the measurement operators for this sequence for an arbitrary spli�ing ratio of η.
�e rest of the sequence remains the same as described in the main text, i.e. a�er the
�rst spli�ing we use π/2 spin rotation around Sy a�er which we transfer half of the
remaining population to the F = 2 and �nally apply another π/2 rotation around Sx . �e
measurement operators for the �nal projective measurement are then given as

N̂1,−1 = (1 − η)
(
1
6 N̂ −

1
16Q̂zz

)
+

√
1 − η

(
−

1
4 Ŝy +

1
8V̂x

)
N̂1,0 = (1 − η)

(
1
6 N̂ +

1
8Q̂zz

)
+

√
1 − η1

4V̂x

N̂1,+1 = (1 − η)
(
1
6 N̂ −

1
16Q̂zz

)
+

√
1 − η

(
1
4 Ŝy +

1
8V̂x

)
N̂2,+2 = (1 − η)

(
1
6 N̂ −

1
16Q̂zz

)
+

√
1 − η

(
−

1
4 Ŝx +

1
8V̂x

)
N̂2,+1 = η

(
1
3 N̂ +

1
2 Ŝz +

1
4Q̂zz

)
N̂2,0 = (1 − η)

(
1
6 N̂ +

1
8Q̂zz

)
−

√
1 − η1

4V̂x

N̂2,−1 = η

(
1
3 N̂ −

1
2 Ŝz +

1
4Q̂zz

)
N̂2,−2 = (1 − η)

(
1
6 N̂ −

1
16Q̂zz

)
+

√
1 − η

(
1
4 Ŝx +

1
8V̂x

)
.

(B.1)
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Here, we omi�ed the terms containing operators from the initially unoccupied F = 2
manifold. �e three spin directions are extracted via the linear combinations

Ŝx =
2

√
1 − η

(
N̂2,−2 − N̂2,+2

)
Ŝy =

2
√

1 − η

(
N̂1,+1 − N̂1,−1

)
Ŝz =

1
η

(
N̂2,+1 − N̂2,−1

)
.

(B.2)

Moreover, this measurement contains information about two additional quadrupole op-
erators that are obtained via

Q̂zz =
2
η

(
N̂2,+1 + N̂2,−1

)
−

4
3 N̂

V̂x =
2

√
1 − η

(
N̂1,+1 + N̂1,−1 − N̂1,0

)
−

√
1 − η
3 N̂ .

(B.3)

B.2. Alternative readout sequence for Ŝx and Q̂yz

In Sec. 7.1.5 we proposed an alternative sequence to simultaneously readout Ŝx and Q̂yz

which mitigates the in�uence of magnetic �eld �uctuations. For this readout three mw
pulses are used to transfer half of the population from (1,m) to (2,m) withm ∈ {0,±1},
where the pulse coupling the states (1, 0) ↔ (2, 0) has a π/2 phase shi� compared to the
other two pulses. A�erwards, we would use two selective π/2 spin rotation in F = 1 and
F = 2 around Sy and SF=2

y , respectively. �e unitary transformation describing this pulse
sequence is

Û = e−iπ/2ŜF=2
y e−iπ/2Ŝye−iπ/2Ĉ00

x e−iπ/2Ĉ11
y e−iπ/2Ĉ−1−1

y . (B.4)

With this unitary transformation, the measurement operators read

N̂1,−1 =
1
6 N̂ +

1
4 Ŝx −

1
16Q̂zz +

1
8V̂x

N̂1,0 =
1
6 N̂ +

1
8Q̂zz −

1
4V̂x

N̂1,+1 =
1
6 N̂ −

1
4 Ŝx −

1
16Q̂zz +

1
8V̂x

N̂2,+2 =
7
48 N̂ +

√
3

8 Q̂yz −
1
32Q̂zz +

1
8V̂x

N̂2,+1 =
1
12 N̂ +

1
16Q̂zz −

1
8V̂x

N̂2,0 =
1
24 N̂ −

1
16Q̂zz

N̂2,−1 =
1
12 N̂ +

1
16Q̂zz −

1
8V̂x

N̂2,−2 =
7
48 N̂ −

√
3

8 Q̂yz −
1
32Q̂zz +

1
8V̂x .

(B.5)
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Again, we neglected the contribution from operators of the initially empty F = 2 mani-
fold. A�er such a measurement the two operators of interest are extracted via the linear
combinations

Ŝx = 2
(
N̂1,−1 − N̂1,+1

)
Q̂yz =

4
√

3

(
N̂2,+2 − N̂2,−2

)
.

(B.6)

Additionally, we can extract the following operators

Q̂zz = −16N̂2,0 +
2
3 N̂

V̂x = 4
(
N̂2,+2 + N̂2,−2 − N̂2,0

)
− N̂ .

(B.7)

Since the operator Q̂zz is connected to Q̂0 = −Q̂zz−1/3N̂ , we can use such a measurement
to directly measure the spin-mixing dynamics on a spin-nematic sphere spanned by the
operators {Q̂yz, Ŝx , Q̂0}.

B.2.1. Entanglement detection using this readout

Eq. (B.6) means that the atom number di�erence N −2 = N2,+2 − N2,−2 in F = 2 contains
information about the operator

√
3/4Q̂yz . In contrast, the readout sequence used in the

experiment which measured the operator 1/2Q̂yz . �us, we have to check whether the
arguments used for the entanglement criterion still remain valid for this readout sequence.
In Fig. 7.3 we have seen that this particular readout has the same sensitivity to detect
spin-nematic squeezing as the sequence introduced in Sec. 6.5. To detect this squeezing,
we evaluate for both sequences the measured atom number di�erence N −F = NF ,+F−NF ,−F

(with F = 1, 2) and compare it to the shot noise limit given in each manifold by N +F =
NF ,+F −NF ,−F . For simplicity let us assume that the squeezed axis is aligned with the Qyz

direction. �en the maximal squeezing that can be measured with the sequence proposed
here is

∆2N −2
〈N +2 〉

≈
∆2N −2
〈3N /8〉 = 0.5. (B.8)

Here we have used that in the undepleted pump approximation the mean atom number
〈N +2 〉 = 〈N2,+2 + N2,−2〉 ≈ 〈3N /8〉. As explained above, the atom number di�erence N −2
gives us information about the observable

√
3/4Q̂yz . For the entanglement criterion as in

Eq. (7.14) we need to quantify the variance

∆2(Qyz/2)
〈N /2〉 →

∆2(2N −2 /
√

3)
〈N /2〉 =

4
3
∆2N −2
〈N /2〉 =

∆2N −2
〈3N /8〉 = 0.5. (B.9)

�e variance of the Sx measurement is the same for both readout sequences. �us, even
though we gain additional information about Q̂0, this readout technique has the same
potential to detect entanglement as the sequence used in the experiment.
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B.3. INFORMATIONALLY COMPLETE SEQUENCE IN A PSEUDO-SPIN-1/2

B.3. Informationally complete sequence in a
pseudo-spin-1/2

Here, we provide details about a possible informationally complete readout of a pseudo-
spin-1/2 system. Such a measurement could be realized by just using the initially empty
magnetic substates of the F = 1 manifold. Here, we present a possible readout sequence
to implement such an informationally complete measurement. In a �rst step, one uses a
mw-pulse coupling the states (2,−1) ↔ (1, 0) followed by another mw pulse coupling the
states (2,−1) ↔ (1,−1) with a relative phase of π/2. �e remaining population in (2,−1)
contains the information about the spin in z-direction. �e length of the two mw pulses
can be adjusted to tune the transferred population and thus the measurement statistics.
With a spin rotation in the F = 1 manifold one maps the two remaining spin directions
onto the population di�erences of the magnetic substates in this manifold. For arbitrary
rotation angles θ1 and θ2 of the two mw pulses the spin observables are extracted by
evaluating

N Jx =
2

sin(θ1/2)
(N1,+1 − N1,−1)

N Jy =
2

sin(θ2/2) cos(θ1/2)
[N1,0 − (N1,+1 + N1,−1) −

1
2 tan2(θ2/2)N2,−1]

N Jz =
1

cos2(θ1/2) cos2(θ2/3)
N2,−1 −

1
2 (N2,−1 + N1,+1 + N1,0 + N1,−1).

(B.10)

144



C. Spin-1 operators
Even though we have given the de�nitions of the operators in the main text, we will
provide here a compact overview of the relevant operators in matrix form and second-
quantization. Additionally, we will give the commutation relations for the di�erent SU(2)
subspaces.

Matrix notation: Second-quantization:

Ŝx =
1
√

2
©­«
0 1 0
1 0 1
0 1 0

ª®¬ Ŝx =
1
√

2
â†0

(
â+1 + â−1

)
+

1
√

2

(
â†+1 + â

†
−1

)
â0

Ŝy =
1
√

2
©­«
0 −i 0
i 0 −i
0 i 0

ª®¬ Ŝy =
i
√

2
â†0

(
â+1 − â−1

)
−

i
√

2

(
â†+1 − â

†
−1

)
â0

Ŝz =
©­«
1 0 0
0 0 0
0 0 −1

ª®¬ Ŝz = â†+1â+1 − â
†
−1â−1

Q̂yz =
1
√

2
©­«
0 −i 0
i 0 i
0 −i 0

ª®¬ Q̂yz =
i
√

2
â†0

(
â+1 + â−1

)
−

i
√

2

(
â†+1 + â

†
−1

)
â0

Q̂xz =
1
√

2
©­«
0 1 0
1 0 −1
0 −1 0

ª®¬ Q̂xz =
1
√

2
â†0

(
â+1 − â−1

)
+

1
√

2

(
â†+1 − â

†
−1

)
â0

Q̂zz =
©­«

2
3 0 0
0 −4

3 0
0 0 2

3

ª®¬ Q̂zz =
2
3

(
â†+1â+1 + â

†
−1â−1

)
−

4
3â
†
0â0

V̂x =
1
2 (Q̂xx − Q̂yy) =

©­«
0 0 1
0 0 0
1 0 0

ª®¬ V̂x = â†+1â−1 + â
†
−1â+1

V̂y = Q̂xy =
©­«
0 0 −i
0 0 0
i 0 0

ª®¬ V̂y = iâ
†
+1â−1 − iâ

†
−1â+1
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Additional operators

N̂ = 13 =
©­«
1 0 0
0 1 0
0 0 1

ª®¬ N̂ = â†+1â+1 + â
†
0â0 + â

†
−1â−1

Q̂0 = −Q̂zz −
1
3N̂ =

©­«
−1 0 0
0 1 0
0 0 −1

ª®¬ Q̂0 = â†0â0 −
(
â†+1â+1 + â

†
−1â−1

)

N̂+ =
©­«
1 0 0
0 0 0
0 0 1

ª®¬ N̂ + = â†+1â+1 + â
†
−1â−1
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APPENDIX C. SPIN-1 OPERATORS

C.1. SU(2) subspaces

{Ŝx, Ŝy, Ŝz}[
Ŝz, Ŝx

]
= iŜy[

Ŝy, Ŝz
]
= iŜx

}
←→ Ŝ⊥(ϕL) = cos(ϕL)Ŝx + sin(ϕL)Ŝy[

Ŝx , Ŝy
]
= iŜz

Since a rotation around Sz corresponds to a change of the Larmor phase ϕL, the �rst two
commutation relations are equivalent to the statement that the operators Ŝx and Ŝy are
connected via a change of the Larmor phase. �e commutation relation in the last line
ensures that also rotations around Sx and Sy can be visualized on a sphere.

{Q̂yz,−Q̂xz, Ŝz}[
Ŝz, Q̂yz

]
= −iQ̂xz[

−Q̂xz, Ŝz
]
= iQ̂yz

}
←→ Q̂⊥(ϕL) = cos(ϕL)Q̂yz − sin(ϕL)Q̂xz[

Q̂yz,−Q̂xz

]
= iŜz

{V̂x, V̂y, Ŝz}[
Ŝz, V̂x

]
= 2iV̂y[

V̂y, Ŝz
]
= 2iV̂x

}
←→ V̂⊥(ϕL) = cos(2ϕL)V̂x + sin(2ϕL)V̂y[

V̂x , V̂y
]
= 2iŜz

C.2. Spin-nematic subspaces

{Q̂yz, Ŝx, Q̂0}[
Q̂0, Q̂yz

]
= 2iŜx[

Ŝx , Q̂0
]
= 2iQ̂yz

}
←→ F̂ (ϕS) = cos(ϕS)Ŝx + sin(ϕS)Q̂yz

〈
[
Q̂yz, Ŝx

]
〉Q = 2i〈Q̂0〉Q for all states with 〈N̂ +〉Q = 〈V̂x〉Q

As before, a rotation generated by Q̂0 corresponds to a change of the spinor phase ϕS.
�us, the �rst two commutation relations are equivalent to the statement that Ŝx and
Q̂yz are connected via a change of the spinor phase irrespective of the state. Only for
the visualization of the other rotations on a spin-nematic sphere, one requires that the
uncertainty relation in the last line is ful�lled.
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C.2. SPIN-NEMATIC SUBSPACES

For general Larmor phases the spin-nematic subspace is given by

{Q̂⊥, Ŝ⊥, Q̂0}[
Q̂0, Q̂⊥

]
= 2iŜ⊥[

Ŝ⊥, Q̂0
]
= 2iQ̂⊥

}
←→ F̂⊥(ϕL,ϕS) = cos(ϕS)Ŝ⊥(ϕL) + sin(ϕS)Q̂⊥(ϕL)

〈
[
Q̂⊥, Ŝ⊥

]
〉Q = 2i〈Q̂0〉Q for all states with 〈N̂ +〉Q = 〈V̂⊥〉Q
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P. Kunkel, M. Prüfer, S. Lannig, R. Rose-Medina, A. Bonnin, M. Gär�ner, H. Strobel
and M. K. Oberthaler
Phys. Rev. Le�. 123, 063603 (2019)

• Experimental extraction of the quantume�ective action for a non-equilibrium
many-body system
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Santos, A. Smerzi & C. Klempt. Satisfying the Einstein-Podolsky-Rosen criterion
with massive particles. Nat. Commun. 6, 8984 (2015).

[13] R. Schmied, J.-D. Bancal, B. Allard, M. Fadel, V. Scarani, P. Treutlein & N. Sangouard.
Bell correlations in a bose-einstein condensate. Science 352, 441–444 (2016).

[14] H. M. Wiseman & J. A. Vaccaro. Entanglement of indistinguishable particles shared
between two parties. Phys. Rev. Le�. 91, 097902 (2003).
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[56] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruiten-
berg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W.
Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau & R.
Hanson. Loophole-free bell inequality violation using electron spins separated by
1.3 kilometres. Nature 526, 682–686 (2015).
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[153] J. Řeháček, Y. S. Teo, Z. Hradil & S. Wallentowitz. Surmounting intrinsic quantum-
measurement uncertainties in gaussian-state tomography with quadrature squeez-
ing. Sci. Rep. 5 (2015).

[154] C. R. Müller, C. Peuntinger, T. Dirmeier, I. Khan, U. Vogl, C. Marquardt, G. Leuchs,
L. L. Sánchez-Soto, Y. S. Teo, Z. Hradil & J. Řeháček. Evading Vacuum Noise:
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wissenscha�lichen Austauschs, wodurch er mir den Besuch einiger wichtiger Konferen-
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